3 个月前

迭代自训练在半监督分割中的GIST与RIST

迭代自训练在半监督分割中的GIST与RIST

摘要

我们研究的是半监督语义分割任务,目标是在仅提供少量人工标注训练样本的情况下,生成像素级的语义对象掩码。我们重点关注迭代自训练方法,并探究在多个优化阶段中自训练行为的表现。研究发现,若以固定的人工标注样本与伪标注样本比例进行简单迭代自训练,会导致性能下降。为此,我们提出两种新策略:贪心迭代自训练(Greedy Iterative Self-Training, GIST)和随机迭代自训练(Random Iterative Self-Training, RIST),它们在每个优化阶段交替使用人工标注数据或伪标注数据进行训练,从而实现性能提升而非退化。进一步实验表明,GIST与RIST可与现有的半监督学习方法有效结合,显著提升整体性能。

基准测试

基准方法指标
semi-supervised-semantic-segmentation-on-1GIST and RIST (DeepLabv2 with ResNet101, MSCOCO pre-trained)
Validation mIoU: 65.14%
semi-supervised-semantic-segmentation-on-18GIST and RIST (DeepLabv2 with ResNet101, MSCOCO pre-trained)
Validation mIoU: 53.51%
semi-supervised-semantic-segmentation-on-19GIST and RIST (DeepLabv2 with ResNet101, MSCOCO pre-trained)
Validation mIoU: 59.98%
semi-supervised-semantic-segmentation-on-2GIST and RIST (DeepLabv2 with ResNet101, MSCOCO pre-trained)
Validation mIoU: 62.57%
semi-supervised-semantic-segmentation-on-3GIST and RIST (DeepLabv2 with ResNet101, MSCOCO pre-trained)
Validation mIoU: 58.70%
semi-supervised-semantic-segmentation-on-4GIST and RIST
Validation mIoU: 70.76%
semi-supervised-semantic-segmentation-on-5GIST and RIST (DeepLabv2 with ResNet101, MSCOCO pre-trained)
Validation mIoU: 69.40%
semi-supervised-semantic-segmentation-on-6GIST and RIST (DeepLabv2 with ResNet101, MSCOCO pre-trained)
Validation mIoU: 67.21%

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
迭代自训练在半监督分割中的GIST与RIST | 论文 | HyperAI超神经