4 个月前

LLaMA:开放且高效的语言基础模型

LLaMA:开放且高效的语言基础模型

摘要

我们介绍了LLaMA,这是一系列基础语言模型,参数规模从70亿到650亿不等。我们的模型在数万亿个标记上进行了训练,并证明了仅使用公开可用的数据集即可训练出最先进的模型,而无需依赖专有且难以获取的数据集。特别是,LLaMA-13B在大多数基准测试中优于GPT-3(1750亿参数),而LLaMA-65B则与最佳模型Chinchilla-70B和PaLM-540B具有竞争力。我们已将所有模型发布给研究社区。

代码仓库

vcskaushik/LLMzip
pytorch
GitHub 中提及
icalk-nlp/educhat
pytorch
GitHub 中提及
kayvr/token-hawk
pytorch
GitHub 中提及
teelinsan/camoscio
pytorch
GitHub 中提及
krafton-ai/korani
pytorch
GitHub 中提及
beomi/koalpaca
pytorch
GitHub 中提及
chaoyi-wu/finetune_llama
jax
GitHub 中提及
freedomintelligence/huatuogpt
pytorch
GitHub 中提及
phoebussi/alpaca-cot
pytorch
GitHub 中提及
facebookresearch/chai
pytorch
GitHub 中提及
kbressem/medalpaca
pytorch
GitHub 中提及
xusenlinzy/api-for-open-llm
pytorch
GitHub 中提及
facebookresearch/llama
官方
pytorch
GitHub 中提及
aethercortex/llama-x
pytorch
GitHub 中提及
guinmoon/llmfarm
GitHub 中提及
ganjinzero/rrhf
pytorch
GitHub 中提及
ohadrubin/rpt
jax
GitHub 中提及
squeezeailab/squeezellm
pytorch
GitHub 中提及
qwopqwop200/GPTQ-for-LLaMa
pytorch
GitHub 中提及
tatsu-lab/stanford_alpaca
pytorch
GitHub 中提及
stanfordbdhg/llama.cpp
GitHub 中提及
replicate/cog_stanford_alpaca
pytorch
GitHub 中提及
zihanzhaosjtu/librisqa
GitHub 中提及
huggingface/transformers
pytorch
GitHub 中提及
ggerganov/llama.cpp
pytorch
GitHub 中提及
ggml-org/llama.cpp
pytorch
GitHub 中提及
aozhongzhang/magr
pytorch
GitHub 中提及
fsoft-ai4code/codecapybara
pytorch
GitHub 中提及
young-geng/easylm
jax
GitHub 中提及
grantslatton/llama.cpp
GitHub 中提及
chaoyi-wu/pmc-llama
pytorch
GitHub 中提及
ecolab-postech/owq
pytorch
GitHub 中提及
batsresearch/alfred
pytorch
GitHub 中提及
llamafamily/llama-chinese
pytorch
GitHub 中提及
hamishivi/easylm
jax
GitHub 中提及
flagalpha/llama2-chinese
pytorch
GitHub 中提及
longhao-chen/aicas2024
pytorch
GitHub 中提及
fajri91/indommlu
pytorch
GitHub 中提及
ofa-sys/expertllama
pytorch
GitHub 中提及
ecnu-icalk/educhat
pytorch
GitHub 中提及
greenbitai/low_bit_llama
pytorch
GitHub 中提及
facico/chinese-vicuna
pytorch
GitHub 中提及
xvyaward/owq
pytorch
GitHub 中提及
xiaoman-zhang/PMC-VQA
pytorch
GitHub 中提及
xzhang97666/alpacare
GitHub 中提及

基准测试

基准方法指标
arithmetic-reasoning-on-gsm8kLLaMA 13B
Accuracy: 17.8
Parameters (Billion): 13
arithmetic-reasoning-on-gsm8kLLaMA 33B-maj1@k
Accuracy: 53.1
Parameters (Billion): 33
arithmetic-reasoning-on-gsm8kLLaMA 7B
Accuracy: 11.0
Parameters (Billion): 7
arithmetic-reasoning-on-gsm8kLLaMA 33B
Accuracy: 35.6
Parameters (Billion): 33
arithmetic-reasoning-on-gsm8kLLaMA 7B (maj1@k)
Accuracy: 18.1
Parameters (Billion): 7
arithmetic-reasoning-on-gsm8kLLaMA 65B
Accuracy: 50.9
Parameters (Billion): 65
arithmetic-reasoning-on-gsm8kLLaMA 13B-maj1@k
Accuracy: 29.3
Parameters (Billion): 13
arithmetic-reasoning-on-gsm8kLLaMA 65B-maj1@k
Accuracy: 69.7
Parameters (Billion): 65
code-generation-on-mbppLLaMA 33B (0-shot)
Accuracy: 30.2
code-generation-on-mbppLLaMA 13B (0-shot)
Accuracy: 22
code-generation-on-mbppLLaMA 65B (0-shot)
Accuracy: 37.7
code-generation-on-mbppLLaMA 7B (0-shot)
Accuracy: 17.7
common-sense-reasoning-on-arc-challengeLLaMA 65B (zero-shot)
Accuracy: 56.0
common-sense-reasoning-on-arc-challengeLLaMA 7B (zero-shot)
Accuracy: 47.6
common-sense-reasoning-on-arc-challengeLLaMA 13B (zero-shot)
Accuracy: 52.7
common-sense-reasoning-on-arc-challengeLLaMA 33B (zero-shot)
Accuracy: 57.8
common-sense-reasoning-on-arc-easyLLaMA 13B (0-shot)
Accuracy: 74.8
common-sense-reasoning-on-arc-easyLLaMA 7B (0-shot)
Accuracy: 72.8
common-sense-reasoning-on-arc-easyLLaMA 33B (0-shot)
Accuracy: 80.0
common-sense-reasoning-on-arc-easyLLaMA 65B (0-shot)
Accuracy: 78.9
common-sense-reasoning-on-winograndeLLaMA 13B (0-shot)
Accuracy: 73.0
common-sense-reasoning-on-winograndeLLaMA 33B (0-shot)
Accuracy: 76.0
common-sense-reasoning-on-winograndeLLaMA 7B (0-shot)
Accuracy: 70.1
common-sense-reasoning-on-winograndeLLaMA 65B (0-shot)
Accuracy: 77.0
few-shot-learning-on-medconceptsqameta-llama/Meta-Llama-3-8B-Instruct
Accuracy: 25.653
math-word-problem-solving-on-mathLLaMA 13B
Accuracy: 3.9
Parameters (Billions): 13
math-word-problem-solving-on-mathLLaMA 13B-maj1@k
Accuracy: 8.8
Parameters (Billions): 13
math-word-problem-solving-on-mathLLaMA 7B
Accuracy: 2.9
Parameters (Billions): 7
math-word-problem-solving-on-mathLLaMA 7B-maj1@k
Accuracy: 6.9
Parameters (Billions): 7
math-word-problem-solving-on-mathLLaMA 65B
Accuracy: 10.6
Parameters (Billions): 65
math-word-problem-solving-on-mathLLaMA 33B
Accuracy: 7.1
Parameters (Billions): 33
math-word-problem-solving-on-mathLLaMA 65B (maj1@k)
Accuracy: 20.5
Parameters (Billions): 65
math-word-problem-solving-on-mathLLaMA 33B-maj1@k
Accuracy: 15.2
Parameters (Billions): 33
multi-task-language-understanding-on-mmluLLaMA 65B (fine-tuned)
Average (%): 68.9
multi-task-language-understanding-on-mmluLLaMA 65B (5-shot)
Average (%): 63.4
multi-task-language-understanding-on-mmluLLaMA 33B (5-shot)
Average (%): 57.8
question-answering-on-boolqLLaMA 7B (zero-shot)
Accuracy: 76.5
question-answering-on-boolqLLaMA 65B (0-shot)
Accuracy: 85.3
question-answering-on-boolqLLaMA 33B (0-shot)
Accuracy: 83.1
question-answering-on-boolqLLaMA 13B (zero-shot)
Accuracy: 78.1
question-answering-on-natural-questionsLLaMA 65B (few-shot, k=5)
EM: 35.0
question-answering-on-natural-questionsLLaMA 65B (few-shot, k=64)
EM: 39.9
question-answering-on-natural-questionsLLaMA 33B (zero-shot)
EM: 24.9
question-answering-on-natural-questionsLLaMA 65B (one-shot)
EM: 31.0
question-answering-on-obqaLLaMA 7B (zero-shot)
Accuracy: 57.2
question-answering-on-obqaLLaMA 13B (zero-shot)
Accuracy: 56.4
question-answering-on-obqaLLaMA 65B (zero-shot)
Accuracy: 60.2
question-answering-on-obqaLLaMA 33B (zero-shot)
Accuracy: 58.6
question-answering-on-piqaLLaMA 33B (0-shot)
Accuracy: 82.3
question-answering-on-piqaLLaMA 7B (0-shot)
Accuracy: 79.8
question-answering-on-piqaLLaMA 13B (0-shot)
Accuracy: 80.1
question-answering-on-piqaLLaMA 65B (0-shot)
Accuracy: 82.8
question-answering-on-social-iqaLLaMA 13B (zero-shot)
Accuracy: 50.4
question-answering-on-social-iqaLLaMA 7B (zero-shot)
Accuracy: 48.9
question-answering-on-social-iqaLLaMA 65B (zero-shot)
Accuracy: 52.3
question-answering-on-social-iqaLLaMA 33B (zero-shot)
Accuracy: 50.4
question-answering-on-timequestionsLlama3
P@1: 17.8
question-answering-on-triviaqaLLaMA 65B (few-shot, k=64)
EM: 73.0
question-answering-on-triviaqaLLaMA 65B (one-shot)
EM: 71.6
question-answering-on-triviaqaLLaMA 65B (few-shot, k=5)
EM: 72.6
question-answering-on-triviaqaLLaMA 65B (zero-shot)
EM: 68.2
question-answering-on-truthfulqaLLaMA 65B
% info: 53
% true: 57
question-answering-on-truthfulqaLLaMA 7B
% info: 29
% true: 33
question-answering-on-truthfulqaLLaMA 13B
% info: 41
% true: 47
question-answering-on-truthfulqaLLaMA 33B
% info: 48
% true: 52
reading-comprehension-on-raceLLaMA 33B (zero-shot)
Accuracy (High): 48.3
Accuracy (Middle): 64.1
reading-comprehension-on-raceLLaMA 65B (zero-shot)
Accuracy (High): 51.6
Accuracy (Middle): 67.9
reading-comprehension-on-raceLLaMA 7B (zero-shot)
Accuracy (High): 46.9
Accuracy (Middle): 61.1
reading-comprehension-on-raceLLaMA 13B (zero-shot)
Accuracy (High): 47.2
Accuracy (Middle): 61.6
stereotypical-bias-analysis-on-crows-pairsLLaMA 65B
Age: 70.1
Disability: 66.7
Gender: 70.6
Nationality: 64.2
Overall: 66.6
Physical Appearance: 77.8
Race/Color: 57.0
Religion: 70.6
Sexual Orientation: 81.0
Socioeconomic status: 71.5
zero-shot-learning-on-medconceptsqameta-llama/Meta-Llama-3-8B-Instruct
Accuracy: 25.840

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
LLaMA:开放且高效的语言基础模型 | 论文 | HyperAI超神经