HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
三维零件分割
3D Part Segmentation On Shapenet Part
3D Part Segmentation On Shapenet Part
评估指标
Class Average IoU
Instance Average IoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Class Average IoU
Instance Average IoU
Paper Title
Repository
GeomGCNN
-
89.1
Exploiting Local Geometry for Feature and Graph Construction for Better 3D Point Cloud Processing with Graph Neural Networks
-
Ours
-
88.1
Beyond local patches: Preserving global–local interactions by enhancing self-attention via 3D point cloud tokenization
-
AVS-Net
85.7
87.3
AVS-Net: Point Sampling with Adaptive Voxel Size for 3D Scene Understanding
SPoTr
85.4
87.2
Self-positioning Point-based Transformer for Point Cloud Understanding
Diffusion Unit
85.2
87.1
Diffusion Unit: Interpretable Edge Enhancement and Suppression Learning for 3D Point Cloud Segmentation
PointNeXt
85.2
87.1
PointNeXt: Revisiting PointNet++ with Improved Training and Scaling Strategies
CurveNet+GAM
-
87.0
$(0, 4)$ dualities
-
DeltaConv (U-ResNet)
-
86.9
DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds
PointMLP+TAP
85.2
86.9
Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models
AGCN
85.7
86.9
AGCN: Adversarial Graph Convolutional Network for 3D Point Cloud Segmentation
-
PointVector-S(C=64)
-
86.9
PointVector: A Vector Representation In Point Cloud Analysis
CurveNet
-
86.8
Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis
Ps-CNN
83.4
86.8
Octree guided CNN with Spherical Kernels for 3D Point Clouds
-
OTMae3D
85.1
86.8
-
-
Spherical Kernel
84.9
86.8
Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds
MKConv
-
86.7
MKConv: Multidimensional Feature Representation for Point Cloud Analysis
-
PointGPT
84.8
86.6
-
-
PointTransformer
83.7
86.6
Point Transformer
Feature Geometric Net (FG-Net)
87.7
86.6
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
DeltaNet
-
86.6
DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds
0 of 67 row(s) selected.
Previous
Next
3D Part Segmentation On Shapenet Part | SOTA | HyperAI超神经