HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
三维点云分类
3D Point Cloud Classification On Scanobjectnn
3D Point Cloud Classification On Scanobjectnn
评估指标
Mean Accuracy
OBJ-BG (OA)
OBJ-ONLY (OA)
Overall Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Mean Accuracy
OBJ-BG (OA)
OBJ-ONLY (OA)
Overall Accuracy
Paper Title
Repository
OmniVec2
-
-
-
97.2
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning
-
PointGST
-
99.48
97.76
96.18
Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning
OmniVec
-
-
-
96.1
OmniVec: Learning robust representations with cross modal sharing
-
GPSFormer
93.8
-
-
95.4
GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding
ReCon++
-
98.80
97.59
95.25
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
PointGPT
-
97.2
96.6
93.4
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
GPSFormer-elite
92.51
-
-
93.30
GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding
Mamba3D
-
94.49
92.43
92.64
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
Mamba3D (no voting)
-
92.94
92.08
91.81
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
ULIP-2 + PointNeXt
91.2
-
-
91.5
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
ReCon
-
95.35
93.80
91.26
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
ULIP-2 + PointNeXt (no voting)
90.3
-
-
90.8
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
ReCon (no voting)
-
95.18
93.29
90.63
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
DeLA
89.3
-
-
90.4
Decoupled Local Aggregation for Point Cloud Learning
PCP-MAE
-
95.52
94.32
90.35
PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders
PointConT
88.5
-
-
90.3
Point Cloud Classification Using Content-based Transformer via Clustering in Feature Space
Point-RAE (no voting)
-
95.53
93.63
90.28
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
Point-FEMAE
-
95.18
93.29
90.22
Towards Compact 3D Representations via Point Feature Enhancement Masked Autoencoders
I2P-MAE (no voting)
-
94.15
91.57
90.11
Learning 3D Representations from 2D Pre-trained Models via Image-to-Point Masked Autoencoders
ULIP + PointNeXt
88.6
-
-
89.7
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
0 of 75 row(s) selected.
Previous
Next
3D Point Cloud Classification On Scanobjectnn | SOTA | HyperAI超神经