HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
动作识别
Action Recognition On Diving 48
Action Recognition On Diving 48
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
LVMAE
94.9
Extending Video Masked Autoencoders to 128 frames
-
Video-FocalNet-B
90.8
Video-FocalNets: Spatio-Temporal Focal Modulation for Video Action Recognition
AIM (CLIP ViT-L/14, 32x224)
90.6
AIM: Adapting Image Models for Efficient Video Action Recognition
DUALPATH
88.7
Dual-path Adaptation from Image to Video Transformers
StructVit-B-4-1
88.3
Learning Correlation Structures for Vision Transformers
-
TFCNet
88.3
TFCNet: Temporal Fully Connected Networks for Static Unbiased Temporal Reasoning
-
ORViT TimeSformer
88.0
Object-Region Video Transformers
GC-TDN
87.6
Group Contextualization for Video Recognition
BEVT
86.7
BEVT: BERT Pretraining of Video Transformers
PSB
86
Spatiotemporal Self-attention Modeling with Temporal Patch Shift for Action Recognition
VIMPAC
85.5
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning
RSANet-R50 (16 frames, ImageNet pretrained, a single clip)
84.2
Relational Self-Attention: What's Missing in Attention for Video Understanding
TQN
81.8
Temporal Query Networks for Fine-grained Video Understanding
-
PMI Sampler
81.3
PMI Sampler: Patch Similarity Guided Frame Selection for Aerial Action Recognition
TimeSformer-L
81
Is Space-Time Attention All You Need for Video Understanding?
TimeSformer-HR
78
Is Space-Time Attention All You Need for Video Understanding?
SlowFast
77.6
SlowFast Networks for Video Recognition
TimeSformer
75
Is Space-Time Attention All You Need for Video Understanding?
0 of 18 row(s) selected.
Previous
Next
Action Recognition On Diving 48 | SOTA | HyperAI超神经