HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
异常检测
Anomaly Detection On Mvtec Loco Ad
Anomaly Detection On Mvtec Loco Ad
评估指标
Avg. Detection AUROC
Detection AUROC (only logical)
Detection AUROC (only structural)
Segmentation AU-sPRO (until FPR 5%)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Avg. Detection AUROC
Detection AUROC (only logical)
Detection AUROC (only structural)
Segmentation AU-sPRO (until FPR 5%)
Paper Title
Repository
CSAD
95.3
96.7
94.0
-
CSAD: Unsupervised Component Segmentation for Logical Anomaly Detection
PSAD
94.9
98.1
91.6
-
Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection
PUAD-M
94.4
93.7
95.9
-
PUAD: Frustratingly Simple Method for Robust Anomaly Detection
SINBAD+EfficientAD
94.2
95.8
94.2
-
Set Features for Anomaly Detection
PUAD-S
93.1
92.0
94.1
-
PUAD: Frustratingly Simple Method for Robust Anomaly Detection
SAM-LAD
90.7
-
-
83.2
SAM-LAD: Segment Anything Model Meets Zero-Shot Logic Anomaly Detection
-
EfficientAD-M
90.7
86.8
94.7
79.8
EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
SLSG
90.3
89.6
91.4
67.3
SLSG: Industrial Image Anomaly Detection by Learning Better Feature Embeddings and One-Class Classification
-
ComAD+PatchCore
90.1
89.4
90.9
-
Component-aware anomaly detection framework for adjustable and logical industrial visual inspection
EfficientAD-S
90.0
85.8
94.1
77.8
EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
ComAD+AST
89.8
90.1
89.4
-
Component-aware anomaly detection framework for adjustable and logical industrial visual inspection
SINBAD Ens
88.3
91.2
85.5
-
Set Features for Anomaly Detection
ComAD+RD4AD
88.2
87.5
88.8
-
Component-aware anomaly detection framework for adjustable and logical industrial visual inspection
HETMM
88.1
83.2
92.9
-
Hard-normal Example-aware Template Mutual Matching for Industrial Anomaly Detection
ComAD+DRAEM
87.9
85.9
89.9
-
Component-aware anomaly detection framework for adjustable and logical industrial visual inspection
GRAD
87.5
-
-
-
Generating and Reweighting Dense Contrastive Patterns for Unsupervised Anomaly Detection
-
SINBAD
86.8
88.9
84.7
-
Set Features for Fine-grained Anomaly Detection
LADMIM
86.0
83.1
90.3
-
LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space
-
THFR
86.0
85.2
86.7
74.1
Template-guided Hierarchical Feature Restoration for Anomaly Detection
-
DSKD
84.0
81.2
86.9
73.0
Contextual Affinity Distillation for Image Anomaly Detection
-
0 of 40 row(s) selected.
Previous
Next
Anomaly Detection On Mvtec Loco Ad | SOTA | HyperAI超神经