HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
异常检测
Anomaly Detection On Shanghaitech
Anomaly Detection On Shanghaitech
评估指标
AUC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUC
Paper Title
Repository
DAC(STG-NF + Jigsaw)
87.72%
Divide and Conquer in Video Anomaly Detection: A Comprehensive Review and New Approach
MULDE-object-centric-micro
86.7%
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
AI-VAD
85.94%
An Attribute-based Method for Video Anomaly Detection
STG-NF
85.9%
Normalizing Flows for Human Pose Anomaly Detection
AnomalyRuler
85.2%
Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
VideoPatchCore
85.1%
VideoPatchCore: An Effective Method to Memorize Normality for Video Anomaly Detection
Jigsaw-VAD
84.3%
Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles
SSMTL++v2
83.8%
SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video Anomaly Detection
-
SSMTL+UBnormal
83.7%
UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection
two-stream
83.7%
Context Recovery and Knowledge Retrieval: A Novel Two-Stream Framework for Video Anomaly Detection
Background- Agnostic Framework+SSPCAB
83.6%
Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection
SSMTL+++SSMCTB
83.6%
Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection
MoPRL
83.35
Regularity Learning via Explicit Distribution Modeling for Skeletal Video Anomaly Detection
SSMTL++v1
82.9%
SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video Anomaly Detection
-
Background-Agnostic Framework
82.7%
A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video
SSMTL
82.4%
Anomaly Detection in Video via Self-Supervised and Multi-Task Learning
MULDE-frame-centric-micro
81.3%
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
TSGAD
80.6%
An Exploratory Study on Human-Centric Video Anomaly Detection through Variational Autoencoders and Trajectory Prediction
DMAD
78.8%
Diversity-Measurable Anomaly Detection
Object-centric AE
78.7%
Object-centric Auto-encoders and Dummy Anomalies for Abnormal Event Detection in Video
0 of 31 row(s) selected.
Previous
Next
Anomaly Detection On Shanghaitech | SOTA | HyperAI超神经