HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
Atari 游戏
Atari Games On Atari 2600 Private Eye
Atari Games On Atari 2600 Private Eye
评估指标
Score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Score
Paper Title
Repository
Go-Explore
95756
First return, then explore
Agent57
79716.46
Agent57: Outperforming the Atari Human Benchmark
SND-VIC
17313
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
MuZero
15299.98
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
GDI-I3
15100
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
GDI-H3
15100
Generalized Data Distribution Iteration
-
GDI-I3
15100
Generalized Data Distribution Iteration
-
C51 noop
15095.0
A Distributional Perspective on Reinforcement Learning
SND-STD
15089
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
CGP
12702.2
Evolving simple programs for playing Atari games
RND
8666
Exploration by Random Network Distillation
DQN-PixelCNN
8358.7
Count-Based Exploration with Neural Density Models
R2D2
5322.7
Recurrent Experience Replay in Distributed Reinforcement Learning
-
Advantage Learning
5276.16
Increasing the Action Gap: New Operators for Reinforcement Learning
SND-V
4213
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
Intrinsic Reward Agent
3036.5
Large-Scale Study of Curiosity-Driven Learning
Gorila
2598.6
Massively Parallel Methods for Deep Reinforcement Learning
DreamerV2
2198
Mastering Atari with Discrete World Models
Best Baseline
1947.3
The Arcade Learning Environment: An Evaluation Platform for General Agents
Bootstrapped DQN
1812.5
Deep Exploration via Bootstrapped DQN
0 of 52 row(s) selected.
Previous
Next
Atari Games On Atari 2600 Private Eye | SOTA | HyperAI超神经