HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
点击率预测
Click Through Rate Prediction On Criteo
Click Through Rate Prediction On Criteo
评估指标
AUC
Log Loss
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUC
Log Loss
Paper Title
Repository
DCNv3
0.8162
0.4358
FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
GDCN
0.8161
0.4360
Towards Deeper, Lighter and Interpretable Cross Network for CTR Prediction
MemoNet
0.8152
-
MemoNet: Memorizing All Cross Features' Representations Efficiently via Multi-Hash Codebook Network for CTR Prediction
TF4CTR
0.8150
-
TF4CTR: Twin Focus Framework for CTR Prediction via Adaptive Sample Differentiation
FinalMLP + MMBAttn
0.81497
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
FinalMLP
0.8149
-
FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction
CETN
0.8148
0.4373
CETN: Contrast-enhanced Through Network for CTR Prediction
DNN + MMBAttn
0.8143
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
STEC
0.8143
0.4379
STEC: See-Through Transformer-based Encoder for CTR Prediction
-
MaskNet
0.8131
-
MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask
DeepLight
0.8123
0.4395
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
CELS
0.8117
0.4400
Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction
-
OptFS
0.8116
0.4401
Optimizing Feature Set for Click-Through Rate Prediction
DCN V2
0.8115
0.4406
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
OptEmbed
0.8114
0.44
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
ContextNet
0.8113
-
ContextNet: A Click-Through Rate Prediction Framework Using Contextual information to Refine Feature Embedding
FiBiNet++
0.8110
-
FiBiNet++: Reducing Model Size by Low Rank Feature Interaction Layer for CTR Prediction
NormDNN
0.8107
-
Correct Normalization Matters: Understanding the Effect of Normalization On Deep Neural Network Models For Click-Through Rate Prediction
DeepFFM
0.8104
0.4416
FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine
FiBiNET
0.8103
0.4423
-
-
0 of 38 row(s) selected.
Previous
Next
Click Through Rate Prediction On Criteo | SOTA | HyperAI超神经