Click Through Rate Prediction On Kdd12
评估指标
AUC
Log Loss
评测结果
各个模型在此基准测试上的表现结果
| Paper Title | Repository | |||
|---|---|---|---|---|
| DCNv3 | 0.8098 | 0.1494 | FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction | |
| MemoNet | 0.8060 | - | MemoNet: Memorizing All Cross Features' Representations Efficiently via Multi-Hash Codebook Network for CTR Prediction | |
| OptEmbed | 0.8028 | 0.1521 | OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction | |
| OptFS | 0.7988 | 0.1527 | Optimizing Feature Set for Click-Through Rate Prediction | |
| AutoInt | 0.7881 | 0.1545 | AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks |
0 of 5 row(s) selected.