HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
域适应
Domain Adaptation On Mnist To Usps
Domain Adaptation On Mnist To Usps
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
FACT
98.8
FACT: Federated Adversarial Cross Training
FAMCD
98.72
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
-
DFA-MCD
98.6
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
Mean teacher
98.26
Self-ensembling for visual domain adaptation
DRANet
98.2
DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
SHOT
98.0
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
DFA-ENT
97.9
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
CyCleGAN (Light-weight Calibrator)
97.1
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
3CATN
96.1
Cycle-consistent Conditional Adversarial Transfer Networks
rRevGrad+CAT
96
Cluster Alignment with a Teacher for Unsupervised Domain Adaptation
DeepJDOT
95.7
DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation
SRDA (RAN)
94.76
Learning Smooth Representation for Unsupervised Domain Adaptation
MCD
93.8
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
ADDN
90.1
Adversarial Discriminative Domain Adaptation
0 of 14 row(s) selected.
Previous
Next
Domain Adaptation On Mnist To Usps | SOTA | HyperAI超神经