HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
域适应
Domain Adaptation On Usps To Mnist
Domain Adaptation On Usps To Mnist
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
FAMCD
98.75
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
-
FACT
98.6
FACT: Federated Adversarial Cross Training
SHOT
98.4
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
CyCleGAN (Light-weight Calibrator)
98.3
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
3CATN
98.3
Cycle-consistent Conditional Adversarial Transfer Networks
Mean teacher
98.07
Self-ensembling for visual domain adaptation
CDAN
98.0
Conditional Adversarial Domain Adaptation
DRANet
97.8
DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
DFA-MCD
96.6
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
DeepJDOT
96.4
DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation
MCD+CAT
96.3
Cluster Alignment with a Teacher for Unsupervised Domain Adaptation
DFA-ENT
96.2
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
MCD
95.7
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
SRDA (RAN)
95.03
Learning Smooth Representation for Unsupervised Domain Adaptation
0 of 14 row(s) selected.
Previous
Next
Domain Adaptation On Usps To Mnist | SOTA | HyperAI超神经