HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
域泛化
Domain Generalization On Office Home
Domain Generalization On Office Home
评估指标
Average Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Accuracy
Paper Title
Repository
MoA (OpenCLIP, ViT-B/16)
90.6
Domain Generalization Using Large Pretrained Models with Mixture-of-Adapters
PromptStyler (CLIP, ViT-L/14)
89.1
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
UniDG + CORAL + ConvNeXt-B
88.9
Towards Unified and Effective Domain Generalization
SIMPLE+
87.7
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
-
VL2V-SD (CLIP, ViT-B/16)
87.38
Leveraging Vision-Language Models for Improving Domain Generalization in Image Classification
CAR-FT (CLIP, ViT-B/16)
85.7
Context-Aware Robust Fine-Tuning
-
GMDG (RegNetY-16GF, SWAD)
84.7
Rethinking Multi-domain Generalization with A General Learning Objective
SIMPLE
84.6
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
-
Ensemble of Averages (RegNetY-16GF)
83.9
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
PromptStyler (CLIP, ViT-B/16)
83.6
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
SPG (CLIP, ViT-B/16)
83.6
Soft Prompt Generation for Domain Generalization
MIRO (RegNetY-16GF, SWAD)
83.3
Domain Generalization by Mutual-Information Regularization with Pre-trained Models
D-Triplet(RegNetY-16GF)
82.6
Domain-aware Triplet loss in Domain Generalization
GMDG (RegNetY-16GF)
80.8
Rethinking Multi-domain Generalization with A General Learning Objective
SEDGE+
80.7
Domain Generalization using Pretrained Models without Fine-tuning
-
Ensemble of Averages (ResNeXt-50 32x4d)
80.2
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
CADG
79.9
CADG: A Model Based on Cross Attention for Domain Generalization
-
SEDGE
79.9
Domain Generalization using Pretrained Models without Fine-tuning
-
GMoE-S/16
74.2
Sparse Mixture-of-Experts are Domain Generalizable Learners
SPG (CLIP, ResNet-50)
73.8
Soft Prompt Generation for Domain Generalization
0 of 45 row(s) selected.
Previous
Next
Domain Generalization On Office Home | SOTA | HyperAI超神经