HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
域泛化
Domain Generalization On Vlcs
Domain Generalization On Vlcs
评估指标
Average Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Accuracy
Paper Title
Repository
CAR-FT (CLIP, ViT-B/16)
85.5
Context-Aware Robust Fine-Tuning
-
UniDG + CORAL + ConvNeXt-B
84.5
Towards Unified and Effective Domain Generalization
SPG (CLIP, ResNet-50)
84.0
Soft Prompt Generation for Domain Generalization
VL2V-SD (CLIP, ViT-B/16)
83.25
Leveraging Vision-Language Models for Improving Domain Generalization in Image Classification
MoA (OpenCLIP, ViT-B/16)
83.1
Domain Generalization Using Large Pretrained Models with Mixture-of-Adapters
D-Triplet(RegNetY-16GF)
82.9
Domain-aware Triplet loss in Domain Generalization
PromptStyler (CLIP, ViT-B/16)
82.9
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
SIMPLE+
82.7
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
-
GMDG (RegNetY-16GF)
82.4
Rethinking Multi-domain Generalization with A General Learning Objective
PromptStyler (CLIP, ViT-L/14)
82.4
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
SPG (CLIP, ViT-B/16)
82.4
Soft Prompt Generation for Domain Generalization
PromptStyler (CLIP, ResNet-50)
82.3
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
SEDGE+
82.2
Domain Generalization using Pretrained Models without Fine-tuning
-
CADG
82.2
CADG: A Model Based on Cross Attention for Domain Generalization
-
GMDG (RegNetY-16GF, SWAD)
82.2
Rethinking Multi-domain Generalization with A General Learning Objective
MIRO (RegNetY-16GF, SWAD)
81.7
Domain Generalization by Mutual-Information Regularization with Pre-trained Models
Ensemble of Averages (RegNetY-16GF)
81.1
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
Ensemble of Averages (ResNeXt-50 32x4d)
80.4
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
GMoE-S/16
80.2
Sparse Mixture-of-Experts are Domain Generalizable Learners
SIMPLE
79.9
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
-
0 of 37 row(s) selected.
Previous
Next
Domain Generalization On Vlcs | SOTA | HyperAI超神经