HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
高效视觉Transformer
Efficient Vits On Imagenet 1K With Lv Vit S
Efficient Vits On Imagenet 1K With Lv Vit S
评估指标
GFLOPs
Top 1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
GFLOPs
Top 1 Accuracy
Paper Title
Repository
Base (LV-ViT-S)
6.6
83.3
All Tokens Matter: Token Labeling for Training Better Vision Transformers
DynamicViT (90%)
5.8
83.3
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
DynamicViT (80%)
5.1
83.2
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
MCTF ($r=8$)
4.9
83.5
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
PS-LV-ViT-S
4.7
82.4
Patch Slimming for Efficient Vision Transformers
-
EViT (70%)
4.7
83.0
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
BAT
4.7
83.1
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers
DynamicViT (70%)
4.6
83.0
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
AS-LV-S (70%)
4.6
83.1
Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully Exploiting Self-Attention
PPT
4.6
83.1
PPT: Token Pruning and Pooling for Efficient Vision Transformers
DPS-LV-ViT-S
4.5
82.9
Patch Slimming for Efficient Vision Transformers
-
SPViT
4.3
83.1
SPViT: Enabling Faster Vision Transformers via Soft Token Pruning
MCTF ($r=12$)
4.2
83.4
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
EViT (50%)
3.9
82.5
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
DiffRate
3.9
82.6
DiffRate : Differentiable Compression Rate for Efficient Vision Transformers
AS-LV-S (60%)
3.9
82.6
Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully Exploiting Self-Attention
eTPS
3.8
82.5
Joint Token Pruning and Squeezing Towards More Aggressive Compression of Vision Transformers
dTPS
3.8
82.6
Joint Token Pruning and Squeezing Towards More Aggressive Compression of Vision Transformers
MCTF ($r=16$)
3.6
82.3
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
0 of 19 row(s) selected.
Previous
Next
Efficient Vits On Imagenet 1K With Lv Vit S | SOTA | HyperAI超神经