Error Understanding On Cub 200 2011 1
评估指标
Average highest confidence (EfficientNetV2-M)
Average highest confidence (MobileNetV2)
Average highest confidence (ResNet-101)
Insertion AUC score (EfficientNetV2-M)
Insertion AUC score (MobileNetV2)
Insertion AUC score (ResNet-101)
评测结果
各个模型在此基准测试上的表现结果
| Paper Title | Repository | |||||||
|---|---|---|---|---|---|---|---|---|
| SMDL-Attribution (ICLR version) | 0.3306 | 0.5367 | 0.4513 | 0.1748 | 0.1922 | 0.1772 | Less is More: Fewer Interpretable Region via Submodular Subset Selection | |
| HSIC-Attribution | 0.2679 | 0.2914 | 0.2493 | 0.1611 | 0.1635 | 0.1446 | Making Sense of Dependence: Efficient Black-box Explanations Using Dependence Measure | |
| Grad-CAM++ | 0.2659 | 0.3462 | 0.2647 | 0.1605 | 0.1284 | 0.1094 | Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks | |
| Score-CAM | 0.2403 | 0.3141 | 0.2510 | 0.1572 | 0.1195 | 0.1073 | Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks |
0 of 4 row(s) selected.