HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
细粒度图像分类
Fine Grained Image Classification On Stanford
Fine Grained Image Classification On Stanford
评估指标
Accuracy
PARAMS
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
PARAMS
Paper Title
Repository
TResnet-L + PMD
97.3%
-
Progressive Multi-task Anti-Noise Learning and Distilling Frameworks for Fine-grained Vehicle Recognition
CMAL-Net
97.1%
-
Learn from Each Other to Classify Better: Cross-layer Mutual Attention Learning for Fine-grained Visual Classification
-
I2-HOFI
96.92%
-
Interweaving Insights: High-Order Feature Interaction for Fine-Grained Visual Recognition
-
TResNet-L + ML-Decoder
96.41%
-
ML-Decoder: Scalable and Versatile Classification Head
DAT
96.2%
-
Domain Adaptive Transfer Learning with Specialist Models
-
ALIGN
96.13%
-
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
SR-GNN
96.1
30.9
SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained Image Categorization
EffNet-L2 (SAM)
95.96%
-
Sharpness-Aware Minimization for Efficiently Improving Generalization
SaSPA + CAL
95.72
-
Advancing Fine-Grained Classification by Structure and Subject Preserving Augmentation
CAP
95.7%
-
Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification
CSQA-Net
95.6%
-
Context-Semantic Quality Awareness Network for Fine-Grained Visual Categorization
-
AttNet & AffNet
95.6%
-
Fine-Grained Visual Classification with Efficient End-to-end Localization
-
CCFR
95.5%
-
Re-rank Coarse Classification with Local Region Enhanced Features for Fine-Grained Image Recognition
-
CAL
95.5%
-
Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification
MPSA
95.4%
-
Multi-Granularity Part Sampling Attention for Fine-Grained Visual Classification
-
Inceptionv4
95.35%
-
Non-binary deep transfer learning for image classification
DCAL
95.3%
-
Dual Cross-Attention Learning for Fine-Grained Visual Categorization and Object Re-Identification
-
API-Net
95.3%
-
Learning Attentive Pairwise Interaction for Fine-Grained Classification
PART
95.3%
-
Part-guided Relational Transformers for Fine-grained Visual Recognition
DenseNet161+MM+FRL
95.2%
-
Learning Class Unique Features in Fine-Grained Visual Classification
-
0 of 82 row(s) selected.
Previous
Next
Fine Grained Image Classification On Stanford | SOTA | HyperAI超神经