HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
图分类
Graph Classification On Nci109
Graph Classification On Nci109
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
WKPI-kcenters
87.3
Learning metrics for persistence-based summaries and applications for graph classification
WL-OA
86.3
On Valid Optimal Assignment Kernels and Applications to Graph Classification
-
ESA (Edge set attention, no positional encodings)
84.976±0.551
An end-to-end attention-based approach for learning on graphs
δ-2-LWL
84.7
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings
CIN++
84.5
CIN++: Enhancing Topological Message Passing
GIN
84.155±0.812
How Powerful are Graph Neural Networks?
PIN
84.0
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
-
DropGIN
83.961±1.141
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Spec-GN
83.62
A New Perspective on the Effects of Spectrum in Graph Neural Networks
CAN
83.6
Cell Attention Networks
Propagation kernels (pk)
83.5
Propagation kernels: efficient graph kernels from propagated information
-
PNA
83.382±1.045
Principal Neighbourhood Aggregation for Graph Nets
GCN
83.140±1.248
Semi-Supervised Classification with Graph Convolutional Networks
GATv2
83.092±0.764
How Attentive are Graph Attention Networks?
GIC
82.86
Gaussian-Induced Convolution for Graphs
-
GAT
82.560±0.601
Graph Attention Networks
PPGN
82.23
Provably Powerful Graph Networks
ECC (5 scores)
82.14
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs
Multigraph ChebNet
82.0
Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules
GraphGPS
81.256±0.501
Recipe for a General, Powerful, Scalable Graph Transformer
0 of 37 row(s) selected.
Previous
Next
Graph Classification On Nci109 | SOTA | HyperAI超神经