HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
图回归
Graph Regression On Pcqm4Mv2 Lsc
Graph Regression On Pcqm4Mv2 Lsc
评估指标
Test MAE
Validation MAE
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Test MAE
Validation MAE
Paper Title
Repository
MLP-Fingerprint
0.1760
0.1753
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
GCN
0.1398
0.1379
Semi-Supervised Classification with Graph Convolutional Networks
GIN
0.1218
0.1195
How Powerful are Graph Neural Networks?
TokenGT
0.0919
0.0910
Pure Transformers are Powerful Graph Learners
EGT+SSA
-
0.0876
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
GRPE-Large
0.0876
0.0867
GRPE: Relative Positional Encoding for Graph Transformer
EGT+SSA+Self-ensemble
-
0.0865
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
Graphormer
-
0.0864
Do Transformers Really Perform Bad for Graph Representation?
Graphormer + GFSA
-
0.0860
Graph Convolutions Enrich the Self-Attention in Transformers!
GRIT
-
0.0859
Graph Inductive Biases in Transformers without Message Passing
EGT
0.0862
0.0857
Global Self-Attention as a Replacement for Graph Convolution
GPS
0.0862
0.0852
Recipe for a General, Powerful, Scalable Graph Transformer
GPTrans-T
0.0842
0.0833
Graph Propagation Transformer for Graph Representation Learning
TIGT
-
0.0826
Topology-Informed Graph Transformer
GPTrans-L
0.0821
0.0809
Graph Propagation Transformer for Graph Representation Learning
Transformer-M
0.0782
0.0772
One Transformer Can Understand Both 2D & 3D Molecular Data
Uni-Mol+
0.0705
0.0693
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
EGT + Triangular Attention
0.0683
0.0671
Global Self-Attention as a Replacement for Graph Convolution
TGT-At
0.0683
0.0671
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
ESA (Edge set attention, no positional encodings)
N/A
0.0235
An end-to-end attention-based approach for learning on graphs
0 of 20 row(s) selected.
Previous
Next
Graph Regression On Pcqm4Mv2 Lsc | SOTA | HyperAI超神经