HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
图回归
Graph Regression On Zinc 500K
Graph Regression On Zinc 500K
评估指标
MAE
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
MAE
Paper Title
Repository
CKGCN
5.9
CKGConv: General Graph Convolution with Continuous Kernels
GIN
0.526
How Powerful are Graph Neural Networks?
GraphSage
0.398
Inductive Representation Learning on Large Graphs
RingGNN
0.353
On the equivalence between graph isomorphism testing and function approximation with GNNs
3WLGNN
0.303
Provably Powerful Graph Networks
MoNet
0.292
Geometric deep learning on graphs and manifolds using mixture model CNNs
GatedGCN
0.282
Residual Gated Graph ConvNets
MPNN (max)
0.252
Neural Message Passing for Quantum Chemistry
GatedGCN-PE
0.214
Benchmarking Graph Neural Networks
GatedGCN-E-PE
0.214
Benchmarking Graph Neural Networks
MPNN (sum)
0.145
Neural Message Passing for Quantum Chemistry
Graphormer-SLIM
0.122
Do Transformers Really Perform Bad for Graph Representation?
EGT
0.108
Global Self-Attention as a Replacement for Graph Convolution
SAN-LSPE
0.104
Graph Neural Networks with Learnable Structural and Positional Representations
CRaWl
0.101
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
GSN
0.101
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
PNA-LSPE
0.095
Graph Neural Networks with Learnable Structural and Positional Representations
CIN-small
0.094
Weisfeiler and Lehman Go Cellular: CW Networks
GatedGCN-LSPE
0.090
Graph Neural Networks with Learnable Structural and Positional Representations
CRaWl+VN
0.088
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
0 of 36 row(s) selected.
Previous
Next
Graph Regression On Zinc 500K | SOTA | HyperAI超神经