HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
图像分类
Image Classification On Imagenet V2
Image Classification On Imagenet V2
评估指标
Top 1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Top 1 Accuracy
Paper Title
Repository
Model soups (BASIC-L)
84.63
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
ViT-e
84.3
PaLI: A Jointly-Scaled Multilingual Language-Image Model
Model soups (ViT-G/14)
84.22
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
MAWS (ViT-6.5B)
84.0
The effectiveness of MAE pre-pretraining for billion-scale pretraining
SwinV2-G
84.00%
Swin Transformer V2: Scaling Up Capacity and Resolution
ViT-G/14
83.33
Scaling Vision Transformers
MAWS (ViT-2B)
83.0
The effectiveness of MAE pre-pretraining for billion-scale pretraining
MOAT-4 (IN-22K pretraining)
81.5
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models
SWAG (ViT H/14)
81.1
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
MOAT-3 (IN-22K pretraining)
80.6
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models
MOAT-2 (IN-22K pretraining)
79.3
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models
MOAT-1 (IN-22K pretraining)
78.4
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models
SwinV2-B
78.08
Swin Transformer V2: Scaling Up Capacity and Resolution
VOLO-D5
78
VOLO: Vision Outlooker for Visual Recognition
VOLO-D4
77.8
VOLO: Vision Outlooker for Visual Recognition
CAIT-M36-448
76.7
-
-
SEER (RegNet10B)
76.2
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
ResMLP-B24/8 22k
74.2
ResMLP: Feedforward networks for image classification with data-efficient training
ViT-B-36x1
73.9
Three things everyone should know about Vision Transformers
ResMLP-B24/8
73.4
ResMLP: Feedforward networks for image classification with data-efficient training
0 of 33 row(s) selected.
Previous
Next
Image Classification On Imagenet V2 | SOTA | HyperAI超神经