Image Clustering On Cifar 10

评估指标

ARI
Accuracy
Backbone
NMI
Train set

评测结果

各个模型在此基准测试上的表现结果

Paper TitleRepository
TURTLE (CLIP + DINOv2)0.9890.995-0.985-Let Go of Your Labels with Unsupervised Transfer
PRCut (CLIP)-0.975-0.934-Deep Clustering via Probabilistic Ratio-Cut Optimization-
PRO-DSC-0.972-0.928-Exploring a Principled Framework For Deep Subspace Clustering-
TEMI CLIP ViT-L (openai)0.9320.969ViT-L0.926TrainExploring the Limits of Deep Image Clustering using Pretrained Models
TEMI DINO ViT-B0.8850.94.5ViT-B0.886TrainExploring the Limits of Deep Image Clustering using Pretrained Models
DPAC0.8660.934ResNet-340.87-Deep Online Probability Aggregation Clustering
SPICE-BPA0.8660.933ResNet-180.870-The Balanced-Pairwise-Affinities Feature Transform
SeCu0.8570.93ResNet-180.861TrainStable Cluster Discrimination for Deep Clustering
TAC0.8310.919-0.833-Image Clustering with External Guidance
SPICE*0.8360.918ResNet-180.850TrainSPICE: Semantic Pseudo-labeling for Image Clustering
DCN+BRB0.8240.912ResNet-180.837TrainBreaking the Reclustering Barrier in Centroid-based Deep Clustering
IDEC+BRB0.8180.907ResNet-180.833TrainBreaking the Reclustering Barrier in Centroid-based Deep Clustering
DEC+BRB0.8120.906ResNet-180.826TrainBreaking the Reclustering Barrier in Centroid-based Deep Clustering
RUC-0.903ResNet-18--Improving Unsupervised Image Clustering With Robust Learning
IMC-SwAV (Best)0.80.897ResNet-180.818TrainInformation Maximization Clustering via Multi-View Self-Labelling
IMC-SwAV (Avg+-)0.790.891ResNet-180.811TrainInformation Maximization Clustering via Multi-View Self-Labelling
TCL0.7800.887ResNet-340.819TrainTwin Contrastive Learning for Online Clustering
HUME0.7760.884ResNet-18-Train--
SCAN0.7720.883ResNet-180.797TrainSCAN: Learning to Classify Images without Labels
SCAN (Avg)0.7580.876ResNet-180.787TrainSCAN: Learning to Classify Images without Labels
0 of 40 row(s) selected.
Image Clustering On Cifar 10 | SOTA | HyperAI超神经