Image Generation On Fashion Mnist
评估指标
FID
Precision
Recall
评测结果
各个模型在此基准测试上的表现结果
| Paper Title | Repository | ||||
|---|---|---|---|---|---|
| Spiking-Diffusion | 91.98 | - | - | Spiking-Diffusion: Vector Quantized Discrete Diffusion Model with Spiking Neural Networks | |
| PR-GLOW- Precision | 83.25 | 0.73 | 0.34 | - | - |
| PR-GLOW- Recall | 42.85 | 0.6648 | 0.4973 | - | - |
| PAE | 28.0 | - | - | Probabilistic Autoencoder | |
| PeerGAN | 21.73 | - | - | DuelGAN: A Duel Between Two Discriminators Stabilizes the GAN Training | - |
| Sliced Iterative Generator | 13.7 | - | - | Sliced Iterative Normalizing Flows | |
| GLF+perceptual loss (ours) | 10.3 | - | - | Generative Latent Flow |
0 of 7 row(s) selected.