HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
图像生成
Image Generation On Imagenet 32X32
Image Generation On Imagenet 32X32
评估指标
bpd
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
bpd
Paper Title
Repository
Real NVP (Dinh et al., 2017)
4.28
Density estimation using Real NVP
Glow (Kingma and Dhariwal, 2018)
4.09
Glow: Generative Flow with Invertible 1x1 Convolutions
MintNet
4.06
MintNet: Building Invertible Neural Networks with Masked Convolutions
Residual Flow
4.01
Residual Flows for Invertible Generative Modeling
BIVA Maaloe et al. (2019)
3.96
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
NVAE w/ flow
3.92
NVAE: A Deep Hierarchical Variational Autoencoder
ANF Huang et al. (2020)
3.92
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
DDPM
3.89
Denoising Diffusion Probabilistic Models
PixelRNN
3.86
Pixel Recurrent Neural Networks
Flow++
3.86
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
SPN Menick and Kalchbrenner (2019)
3.85
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
-
DDPM++ (VP, NLL) + ST
3.85
Soft Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation
Gated PixelCNN
3.83
Conditional Image Generation with PixelCNN Decoders
Very Deep VAE
3.8
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
δ-VAE
3.77
Preventing Posterior Collapse with delta-VAEs
-
MRCNF
3.77
Multi-Resolution Continuous Normalizing Flows
Image Transformer
3.77
Image Transformer
-
ScoreFlow
3.76
Maximum Likelihood Training of Score-Based Diffusion Models
Hourglass
3.74
Hierarchical Transformers Are More Efficient Language Models
Reflected Diffusion
3.74
Reflected Diffusion Models
0 of 33 row(s) selected.
Previous
Next
Image Generation On Imagenet 32X32 | SOTA | HyperAI超神经