Image Retrieval On Roxford Hard

评估指标

mAP

评测结果

各个模型在此基准测试上的表现结果

Paper TitleRepository
SuperGlobal80.2Global Features are All You Need for Image Retrieval and Reranking
AMES80AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-level Retrieval
Hypergraph propagation+community selection73Hypergraph Propagation and Community Selection for Objects Retrieval-
Token66.57Learning Token-based Representation for Image Retrieval
DELG+ α QE reranking+ RRT reranking64Instance-level Image Retrieval using Reranking Transformers
FIRe61.2Learning Super-Features for Image Retrieval
HOW56.9Learning and aggregating deep local descriptors for instance-level recognition
ResNet101+ArcFace GLDv2-train-clean51.6Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
DELF–HQE+SP50.3Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–HQE+SP 49.7Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–ASMK*+SP43.1 Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–HQE 41.3Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–GeM38.5Fine-tuning CNN Image Retrieval with No Human Annotation
HesAff–rSIFT–ASMK*+SP36.7Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*36.4 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*+SP35.8 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*35.4 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–R-MAC32.4 Particular object retrieval with integral max-pooling of CNN activations
Dino24.3Emerging Properties in Self-Supervised Vision Transformers
R – [O] –MAC 18.0 Particular object retrieval with integral max-pooling of CNN activations
0 of 23 row(s) selected.
Image Retrieval On Roxford Hard | SOTA | HyperAI超神经