HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
图像检索
Image Retrieval On Roxford Hard
Image Retrieval On Roxford Hard
评估指标
mAP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mAP
Paper Title
Repository
SuperGlobal
80.2
Global Features are All You Need for Image Retrieval and Reranking
AMES
80
AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-level Retrieval
Hypergraph propagation+community selection
73
Hypergraph Propagation and Community Selection for Objects Retrieval
-
Token
66.57
Learning Token-based Representation for Image Retrieval
DELG+ α QE reranking+ RRT reranking
64
Instance-level Image Retrieval using Reranking Transformers
FIRe
61.2
Learning Super-Features for Image Retrieval
HOW
56.9
Learning and aggregating deep local descriptors for instance-level recognition
ResNet101+ArcFace GLDv2-train-clean
51.6
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
DELF–HQE+SP
50.3
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–HQE+SP
49.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–ASMK*+SP
43.1
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–HQE
41.3
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–GeM
38.5
Fine-tuning CNN Image Retrieval with No Human Annotation
HesAff–rSIFT–ASMK*+SP
36.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*
36.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*+SP
35.8
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*
35.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–R-MAC
32.4
Particular object retrieval with integral max-pooling of CNN activations
Dino
24.3
Emerging Properties in Self-Supervised Vision Transformers
R – [O] –MAC
18.0
Particular object retrieval with integral max-pooling of CNN activations
0 of 23 row(s) selected.
Previous
Next
Image Retrieval On Roxford Hard | SOTA | HyperAI超神经