HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
图像检索
Image Retrieval On Rparis Hard
Image Retrieval On Rparis Hard
评估指标
mAP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mAP
Paper Title
Repository
AMES
89.7
AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-level Retrieval
SuperGlobal
86.7
Global Features are All You Need for Image Retrieval and Reranking
Hypergraph propagation
83.3
Hypergraph Propagation and Community Selection for Objects Retrieval
-
Token
78.56
Learning Token-based Representation for Image Retrieval
DELG+ α QE reranking + RRT reranking
77.7
Instance-level Image Retrieval using Reranking Transformers
ResNet101+ArcFace GLDv2-train-clean
70.3
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
FIRe
70.0
Learning Super-Features for Image Retrieval
DELF–HQE+SP
69.3
Large-Scale Image Retrieval with Attentive Deep Local Features
HOW
62.4
Learning and aggregating deep local descriptors for instance-level recognition
R–R-MAC
59.4
Particular object retrieval with integral max-pooling of CNN activations
R–GeM
56.3
Fine-tuning CNN Image Retrieval with No Human Annotation
DELF–ASMK*+SP
55.4
Large-Scale Image Retrieval with Attentive Deep Local Features
Dino
51.6
Emerging Properties in Self-Supervised Vision Transformers
R – [O] –CroW
47.2
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
HesAff–rSIFT–HQE+SP
45.1
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–HQE
44.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –SPoC
44.7
Aggregating Local Deep Features for Image Retrieval
-
R – [O] –MAC
44.1
Particular object retrieval with integral max-pooling of CNN activations
HesAff–rSIFT–ASMK*+SP
35.0
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*
34.5
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
0 of 23 row(s) selected.
Previous
Next