HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
噪声标签学习
Learning With Noisy Labels On Animal
Learning With Noisy Labels On Animal
评估指标
Accuracy
ImageNet Pretrained
Network
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
ImageNet Pretrained
Network
Paper Title
Repository
Jigsaw-ViT
89.0
NO
DeiT-S
Jigsaw-ViT: Learning Jigsaw Puzzles in Vision Transformer
SURE
89.0
NO
Vgg19-BN
SURE: SUrvey REcipes for building reliable and robust deep networks
PSSCL
88.74
NO
Vgg19-BN
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
-
SSR
88.5
NO
Vgg19-BN
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
BtR
88.5
NO
Vgg19-BN
Bootstrapping the Relationship Between Images and Their Clean and Noisy Labels
SPR
86.8
NO
VGG19-BN
Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels
Dynamic Loss
86.5
NO
Vgg19-BN
Dynamic Loss For Robust Learning
C2MT
85.9
NO
Vgg-19-BN
Cross-to-merge training with class balance strategy for learning with noisy labels
-
GNL
85.9
NO
Vgg-19-BN
Partial Label Supervision for Agnostic Generative Noisy Label Learning
InstanceGM with ConvNeXt
84.7
NO
ConvNeXt
Instance-Dependent Noisy Label Learning via Graphical Modelling
InstanceGM
84.6
NO
Vgg19-BN
Instance-Dependent Noisy Label Learning via Graphical Modelling
Nested+Co-teaching (NCT)
84.1
NO
Vgg19-BN
Compressing Features for Learning with Noisy Labels
PLC
83.4
NO
Vgg19-BN
Learning with Feature-Dependent Label Noise: A Progressive Approach
InstanceGM with ResNet
82.3
NO
ResNet
Instance-Dependent Noisy Label Learning via Graphical Modelling
SELFIE
81.8
NO
Vgg19-BN
SELFIE: Refurbishing Unclean Samples for Robust Deep Learning
-
Nested Dropout
81.3
NO
Vgg19-BN
Boosting Co-teaching with Compression Regularization for Label Noise
CE + Dropout
81.3
NO
Vgg19-BN
Boosting Co-teaching with Compression Regularization for Label Noise
Cross Entropy
79.4
NO
Vgg19-BN
Learning with Feature-Dependent Label Noise: A Progressive Approach
0 of 18 row(s) selected.
Previous
Next
Learning With Noisy Labels On Animal | SOTA | HyperAI超神经