HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Actor
Node Classification On Actor
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
NCSAGE
43.89 ± 1.33
Clarify Confused Nodes via Separated Learning
NCGCN
43.16 ± 1.32
Clarify Confused Nodes via Separated Learning
2-HiGCN
41.81±0.52
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
IIE-GNN
39.91 ± 2.41
Enhancing Intra-class Information Extraction for Heterophilous Graphs: One Neural Architecture Search Approach
-
LHS
38.87±1.0
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
-
RDGNN-I
38.69 ± 1.41
Graph Neural Reaction Diffusion Models
-
SignGT
38.65±0.32
SignGT: Signed Attention-based Graph Transformer for Graph Representation Learning
-
CATv3-sup
38.5±1.2
CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
Ordered GNN
37.99 ± 1.00
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
MbaGCN
37.97±0.91
Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space
-
GNNMoE(SAGE-like P)
37.97±1.01
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
SADE-GCN
37.91 ± 0.97
Self-attention Dual Embedding for Graphs with Heterophily
-
NLMLP
37.9 ± 1.3
Non-Local Graph Neural Networks
O(d)-NSD
37.81 ± 1.15
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
37.80 ± 1.22
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Diag-NSD
37.79 ± 1.01
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GNNMoE(GAT-like P)
37.76±0.98
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GloGNN++
37.7 ± 1.40
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GGCN + UniGAP
37.69 ± 1.2
UniGAP: A Universal and Adaptive Graph Upsampling Approach to Mitigate Over-Smoothing in Node Classification Tasks
GNNMoE(GCN-like P)
37.59±1.36
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
0 of 62 row(s) selected.
Previous
Next
Node Classification On Actor | SOTA | HyperAI超神经