HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Citeseer
Node Classification On Citeseer
评估指标
Accuracy
Validation
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Validation
Paper Title
Repository
ACMII-Snowball-2
82.07 ± 1.04
-
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
-
ACM-GCN
81.68 ± 0.97
-
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
-
ACM-Snowball-2
81.58 ± 1.23
-
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
-
ACMII-Snowball-3
81.56 ± 1.15
-
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
-
SSP
80.52 ± 0.14
-
Optimization of Graph Neural Networks with Natural Gradient Descent
NodeNet
80.09%
-
NodeNet: A Graph Regularised Neural Network for Node Classification
-
SplineCNN
79.20%
-
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
GCN-LPA
78.7 ± 0.6
-
Unifying Graph Convolutional Neural Networks and Label Propagation
Graph-MLP + SWA
77.99 ± 1.57%
-
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
CNMPGNN
76.81±1.40
-
CN-Motifs Perceptive Graph Neural Networks
-
CGT
76.59±0.98
-
Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures
3ference
76.33
-
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
-
MMA
76.30%
-
Multi-Mask Aggregators for Graph Neural Networks
-
AdaGCN
76.22 ± 0.20
-
AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models
UGT
76.08±2.5
-
Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity
PPNP
75.83%
YES
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
CoLinkDist
75.79%
-
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
CoLinkDistMLP
75.77%
-
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
APPNP
75.73%
-
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Cleora
75.7
-
Cleora: A Simple, Strong and Scalable Graph Embedding Scheme
0 of 70 row(s) selected.
Previous
Next
Node Classification On Citeseer | SOTA | HyperAI超神经