HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Cornell
Node Classification On Cornell
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
RDGNN-I
92.72 ± 5.88
Graph Neural Reaction Diffusion Models
-
CATv3-sup
88.8±2.1
CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
H2GCN-RARE (λ=1.0)
87.84±4.05
GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy
-
FSGNN (8-hop)
87.84±6.19
Improving Graph Neural Networks with Simple Architecture Design
Ordered GNN
87.03±4.73
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
DJ-GNN
87.03±1.62
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
UniG-Encoder
86.75±6.56
UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node Classification
ACMII-GCN++
86.49 ± 6.73
Revisiting Heterophily For Graph Neural Networks
GCNH
86.49±6.98
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
Diag-NSD
86.49 ± 7.35
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
M2M-GNN
86.48 ± 6.1
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
SADE-GCN
86.21±5.59
Self-attention Dual Embedding for Graphs with Heterophily
-
LHS
85.96±5.1
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
-
ACMII-GCN
85.95 ± 5.64
Revisiting Heterophily For Graph Neural Networks
GloGNN++
85.95±5.10
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Conn-NSD
85.95±7.72
Sheaf Neural Networks with Connection Laplacians
ACM-GCN++
85.68 ± 5.8
Revisiting Heterophily For Graph Neural Networks
Gen-NSD
85.68 ± 6.51
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GGCN
85.68 ± 6.63
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
ACM-GCN+
85.68 ± 4.84
Revisiting Heterophily For Graph Neural Networks
0 of 60 row(s) selected.
Previous
Next
Node Classification On Cornell | SOTA | HyperAI超神经