HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Texas
Node Classification On Texas
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
RDGNN-S
94.59 ± 5.97
Graph Neural Reaction Diffusion Models
-
RDGNN-I
93.51 ± 5.93
Graph Neural Reaction Diffusion Models
-
MGNN + Hetero-S (8 layers)
93.09
The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
2-HiGCN
92.45±0.73
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
DJ-GNN
92.43±3.15
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
M2M-GNN
89.19 ± 4.5
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
ACM-GCN+
88.38 ± 3.64
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
88.38 ± 3.43
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
88.38 ± 3.43
Revisiting Heterophily For Graph Neural Networks
GRADE-GAT
88.3±3.5
Graph Neural Aggregation-diffusion with Metastability
-
ACMII-GCN+
88.11 ± 3.24
Revisiting Heterophily For Graph Neural Networks
GCNH
87.84±3.87
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
ACM-GCN
87.84 ± 4.4
Revisiting Heterophily For Graph Neural Networks
HLP Concat
87.57 ± 5.44
Simple Truncated SVD based Model for Node Classification on Heterophilic Graphs
-
FSGNN
87.30 ± 5.55
Improving Graph Neural Networks with Simple Architecture Design
H2GCN-RARE (λ=1.0)
86.76±5.80
GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy
-
ACMII-GCN
86.76 ± 4.75
Revisiting Heterophily For Graph Neural Networks
UGT
86.67 ±8.31
Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity
GraphSAGE + UniGAP
86.52 ± 4.8
UniGAP: A Universal and Adaptive Graph Upsampling Approach to Mitigate Over-Smoothing in Node Classification Tasks
SADE-GCN
86.49±5.12
Self-attention Dual Embedding for Graphs with Heterophily
-
0 of 62 row(s) selected.
Previous
Next
Node Classification On Texas | SOTA | HyperAI超神经