HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Wisconsin
Node Classification On Wisconsin
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
5-HiGCN
94.99±0.65
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
RDGNN-I
93.72 ± 4.59
Graph Neural Reaction Diffusion Models
-
H2GCN-RARE (λ=1.0)
90.00±2.97
GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy
-
O(d)-NSD
89.41 ± 4.74
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
89.21 ± 3.84
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
M2M-GNN
89.01 ± 4.1
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
HDP
88.82 ± 3.40
Heterophilous Distribution Propagation for Graph Neural Networks
-
MGNN + Hetero-S (6 layers)
88.77
The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
Conn-NSD
88.73±4.47
Sheaf Neural Networks with Connection Laplacians
Diag-NSD
88.63 ± 2.75
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
SADE-GCN
88.63±4.54
Self-attention Dual Embedding for Graphs with Heterophily
-
ACM-GCN+
88.43 ± 2.39
Revisiting Heterophily For Graph Neural Networks
FSGNN (3-hop)
88.43±3.22
Improving Graph Neural Networks with Simple Architecture Design
ACM-GCN
88.43 ± 3.22
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
88.43 ± 3.66
Revisiting Heterophily For Graph Neural Networks
LHS
88.32±2.3
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
-
ACM-GCN++
88.24 ± 3.16
Revisiting Heterophily For Graph Neural Networks
GloGNN++
88.04±3.22
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
ACMII-GCN+
88.04 ± 3.66
Revisiting Heterophily For Graph Neural Networks
Ordered GNN
88.04±3.63
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
0 of 63 row(s) selected.
Previous
Next
Node Classification On Wisconsin | SOTA | HyperAI超神经