Object Detection On Coco O

评估指标

Average mAP
Effective Robustness

评测结果

各个模型在此基准测试上的表现结果

Paper TitleRepository
EVA57.828.86EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
DETA (Swin-L)48.520.15NMS Strikes Back
GLIP-L (Swin-L)48.024.89Grounded Language-Image Pre-training
GRiT (ViT-H)42.915.72GRiT: A Generative Region-to-text Transformer for Object Understanding
DINO (Swin-L)42.115.76DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
CBNetV2 (Swin-L)39.012.36CBNet: A Composite Backbone Network Architecture for Object Detection
ConvNeXt-XL (Cascade Mask R-CNN)37.512.68A ConvNet for the 2020s
InternImage-L (Cascade Mask R-CNN)37.011.72InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
DyHead (Swin-L)35.310.00Dynamic Head: Unifying Object Detection Heads with Attentions
ViTDet (ViT-H)34.3-Exploring Plain Vision Transformer Backbones for Object Detection
ViT-Adapter (BEiTv2-L)34.257.79Vision Transformer Adapter for Dense Predictions
FIBER-B (Swin-B)33.711.43Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone
QueryInst (Swin-L)33.28.26Instances as Queries
YOLOv6-L632.56.73YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
YOLOv7-E6E32.06.42YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
MViTV2-H (Cascade Mask R-CNN)30.95.62MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
Det-AdvProp (EfficientNet-B5)30.87.34Robust and Accurate Object Detection via Adversarial Learning
YOLOv4-P630.45.89YOLOv4: Optimal Speed and Accuracy of Object Detection
YOLOX-X30.37.26YOLOX: Exceeding YOLO Series in 2021
CenterNet2 (R2-101-DCN)29.54.29Probabilistic two-stage detection
0 of 45 row(s) selected.
Object Detection On Coco O | SOTA | HyperAI超神经