HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
物体识别
Object Recognition On Shape Bias
Object Recognition On Shape Bias
评估指标
shape bias
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
shape bias
Paper Title
Repository
Imagen
98.7
Intriguing properties of generative classifiers
Stable Diffusion
92.7
Intriguing properties of generative classifiers
Parti
91.7
Intriguing properties of generative classifiers
ViT-22B-384
86.4
Scaling Vision Transformers to 22 Billion Parameters
ViT-22B-560
83.8
Scaling Vision Transformers to 22 Billion Parameters
CLIP (ViT-B)
79.9
Learning Transferable Visual Models From Natural Language Supervision
ViT-22B-224
78.0
Scaling Vision Transformers to 22 Billion Parameters
ResNet-50 (L2 eps 5.0 adv trained)
69.5
Do Adversarially Robust ImageNet Models Transfer Better?
ResNet-50 (with strong augmentations)
62.2
The Origins and Prevalence of Texture Bias in Convolutional Neural Networks
-
SWSL (ResNeXt-101)
49.8
Billion-scale semi-supervised learning for image classification
AlexNet
42.9
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
SimCLR (ResNet-50x2)
41.7
A Simple Framework for Contrastive Learning of Visual Representations
SimCLR (ResNet-50x4)
40.7
A Simple Framework for Contrastive Learning of Visual Representations
SimCLR (ResNet-50x1)
38.9
A Simple Framework for Contrastive Learning of Visual Representations
GoogLeNet
31.2
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
SWSL (ResNet-50)
28.6
Billion-scale semi-supervised learning for image classification
ResNet-50
22.1
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
VGG-16
17.2
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
0 of 18 row(s) selected.
Previous
Next
Object Recognition On Shape Bias | SOTA | HyperAI超神经