HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
实时物体检测
Real Time Object Detection On Coco
Real Time Object Detection On Coco
评估指标
FPS (V100, b=1)
box AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
FPS (V100, b=1)
box AP
Paper Title
Repository
DEIM-D-FINE-X+
78 (T4)
59.5
DEIM: DETR with Improved Matching for Fast Convergence
D-FINE-X+
78 (T4)
59.3
D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement
YOLOv6-L6(1280)
26
57.2
YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
D-FINE-L+
124 (T4)
57.1
0/1 Deep Neural Networks via Block Coordinate Descent
-
PRB-FPN6-E-ELAN(1280)
31
56.9
Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection
YOLOv7-E6E(1280)
36
56.8
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
YOLOv7-D6(1280)
44
56.6
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
DEIM-D-FINE-X
78 (T4)
56.5
DEIM: DETR with Improved Matching for Fast Convergence
RT-DETR-H(640)
40 (T4)
56.3
DETRs Beat YOLOs on Real-time Object Detection
YOLOv7-E6(1280)
56
56
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
D-FINE-X
78 (T4)
55.8
D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement
YOLOv9-E
-
55.6
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
YOLOR-D6
30
55.4
You Only Learn One Representation: Unified Network for Multiple Tasks
YOLOv12x
85 (T4)
55.2
YOLOv12: A Breakdown of the Key Architectural Features
-
D-FINE-M+
178 (T4)
55.1
D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement
GELAN-E
-
55.0
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
YOLOv7-W6(1280)
84
54.9
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
YOLOR-E6
37
54.8
You Only Learn One Representation: Unified Network for Multiple Tasks
RT-DETR-X
74 (T4)
54.8
DETRs Beat YOLOs on Real-time Object Detection
PP-YOLOE+_X
45
54.7
PP-YOLOE: An evolved version of YOLO
0 of 82 row(s) selected.
Previous
Next
Real Time Object Detection On Coco | SOTA | HyperAI超神经