HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
语义分割
Semantic Segmentation On Densepass
Semantic Segmentation On Densepass
评估指标
mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mIoU
Paper Title
Repository
Trans4PASS+ (multi-scale)
57.23%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
Trans4PASS+ (single-scale)
56.45%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
Trans4PASS (multi-scale)
56.38%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
Trans4PASS (single-scale)
55.25%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
DAFormer
54.67%
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
PCS
53.83%
Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation
P2PDA (Cityscapes+WildDash)
48.52%
Transfer beyond the Field of View: Dense Panoramic Semantic Segmentation via Unsupervised Domain Adaptation
SIM
44.58%
Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation
PoolFormer (MiT-B1)
43.18%
MetaFormer Is Actually What You Need for Vision
ECANet
43.02%
Capturing Omni-Range Context for Omnidirectional Segmentation
FAN (MiT-B1)
42.54%
Understanding The Robustness in Vision Transformers
SegFormer (MiT-B2)
42.4%
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
ASMLP (MiT-B1)
42.05%
AS-MLP: An Axial Shifted MLP Architecture for Vision
P2PDA (Cityscapes)
41.99%
Transfer beyond the Field of View: Dense Panoramic Semantic Segmentation via Unsupervised Domain Adaptation
CycleMLP (MiT-B1)
40.16%
CycleMLP: A MLP-like Architecture for Dense Prediction
SegFormer (MiT-B1)
38.5%
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
DPT (MiT-B1)
36.50%
DPT: Deformable Patch-based Transformer for Visual Recognition
SETR (PUP, Transformer-L)
35.7%
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
SETR (MLA, Transformer-L)
35.6%
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
Seamless (Mapillary)
34.14%
Seamless Scene Segmentation
0 of 36 row(s) selected.
Previous
Next
Semantic Segmentation On Densepass | SOTA | HyperAI超神经