HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
语义分割
Semantic Segmentation On S3Dis Area5
Semantic Segmentation On S3Dis Area5
评估指标
Number of params
mAcc
mIoU
oAcc
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Number of params
mAcc
mIoU
oAcc
Paper Title
Repository
Sonata + PTv3
-
81.6
76.0
93.0
Sonata: Self-Supervised Learning of Reliable Point Representations
OmniVec
-
-
75.9
-
OmniVec: Learning robust representations with cross modal sharing
-
PTv3 + PPT
-
80.1
74.7
92.0
Point Transformer V3: Simpler, Faster, Stronger
Swin3D-L
N/A
80.5
74.5
92.7
Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene Understanding
DITR
-
-
74.1
-
DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation
DeLA
7.0M
80.0
74.1
92.2
Decoupled Local Aggregation for Point Cloud Learning
Ours
-
80.2
73.6
93.0
Beyond local patches: Preserving global–local interactions by enhancing self-attention via 3D point cloud tokenization
-
Pamba
-
-
73.5
-
Pamba: Enhancing Global Interaction in Point Clouds via State Space Model
-
ConDaFormer
-
78.9
73.5
92.4
ConDaFormer: Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding
LPFP(Point Transformer*)
31.2M
78.7
73.5
92.0
A Large-Scale Network Construction and Lightweighting Method for Point Cloud Semantic Segmentation
-
KPConvX-L
-
78.7
73.5
91.7
KPConvX: Modernizing Kernel Point Convolution with Kernel Attention
SPG(PTv2)
-
79.5
73.3
91.9
Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation
PointHR
-
78.7
73.2
91.8
PointHR: Exploring High-Resolution Architectures for 3D Point Cloud Segmentation
PonderV2 + SparseUNet
-
79.0
73.2
92.2
PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm
PPT + SparseUNet
N/A
78.2
72.7
91.5
Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training
PTv2
N/A
78.0
72.6
91.6
Point Transformer V2: Grouped Vector Attention and Partition-based Pooling
PT + ERDA
-
-
72.6
-
-
-
SAT (FAT)
N/A
78.8
72.6
-
SAT: Size-Aware Transformer for 3D Point Cloud Semantic Segmentation
-
PointVector-XL
-
78.1
72.3
91
PointVector: A Vector Representation In Point Cloud Analysis
WindowNorm+StratifiedTransformer
N/A
78.2
72.2
91.4
Window Normalization: Enhancing Point Cloud Understanding by Unifying Inconsistent Point Densities
0 of 60 row(s) selected.
Previous
Next
Semantic Segmentation On S3Dis Area5 | SOTA | HyperAI超神经