HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
基于骨骼的动作识别
Skeleton Based Action Recognition On Ntu Rgbd 1
Skeleton Based Action Recognition On Ntu Rgbd 1
评估指标
Accuracy (Cross-Setup)
Accuracy (Cross-Subject)
GFLOPS per prediction
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy (Cross-Setup)
Accuracy (Cross-Subject)
GFLOPS per prediction
Paper Title
Repository
DeGCN
92.1
91.0
-
DeGCN: Deformable Graph Convolutional Networks for Skeleton-Based Action Recognition
-
JMDA (based on Skeleton MixFormer)
91.9
90.9
-
Joint Mixing Data Augmentation for Skeleton-based Action Recognition
-
ProtoGCN
92.2
90.9
-
Revealing Key Details to See Differences: A Novel Prototypical Perspective for Skeleton-based Action Recognition
LA-GCN
91.8
90.7
-
Language Knowledge-Assisted Representation Learning for Skeleton-Based Action Recognition
Shap-Mix
91.7
90.4
-
Shap-Mix: Shapley Value Guided Mixing for Long-Tailed Skeleton Based Action Recognition
BlockGCN
91.5
90.3
-
BlockGCN: Redefine Topology Awareness for Skeleton-Based Action Recognition
-
MMCL
91.7
90.3
-
Multi-Modality Co-Learning for Efficient Skeleton-based Action Recognition
TSGCNeXt
91.7
90.2
-
TSGCNeXt: Dynamic-Static Multi-Graph Convolution for Efficient Skeleton-Based Action Recognition with Long-term Learning Potential
HD-GCN
91.6
90.1
-
Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition
STEP-CATFormer
91.2
90.0
-
STEP CATFormer: Spatial-Temporal Effective Body-Part Cross Attention Transformer for Skeleton-based Action Recognition
MAMP
91.3
90.0
-
Masked Motion Predictors are Strong 3D Action Representation Learners
Hyperformer
91.3
89.9
-
Hypergraph Transformer for Skeleton-based Action Recognition
LST
91.1
89.9
-
Generative Action Description Prompts for Skeleton-based Action Recognition
SkateFormer
91.4
89.8
-
SkateFormer: Skeletal-Temporal Transformer for Human Action Recognition
InfoGCN
91.2
89.8
-
InfoGCN: Representation Learning for Human Skeleton-Based Action Recognition
-
Stream-GCN
91.0
89.7
-
Action Recognition with Multi-stream Motion Modeling and Mutual Information Maximization
-
DG-STGCN
91.3
89.6
-
DG-STGCN: Dynamic Spatial-Temporal Modeling for Skeleton-based Action Recognition
SkeletonGCL (based on CTR-GCN)
91.0
89.5
-
Graph Contrastive Learning for Skeleton-based Action Recognition
TCA-GCN
90.8
89.4
-
Skeleton-based Action Recognition via Temporal-Channel Aggregation
PSUMNet
90.6
89.4
-
PSUMNet: Unified Modality Part Streams are All You Need for Efficient Pose-based Action Recognition
0 of 81 row(s) selected.
Previous
Next
Skeleton Based Action Recognition On Ntu Rgbd 1 | SOTA | HyperAI超神经