HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
SMAC
Smac On Smac Corridor
Smac On Smac Corridor
评估指标
Average Score
Median Win Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Score
Median Win Rate
Paper Title
Repository
ACE
-
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
DDN
20
95.4
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DIQL
19.68
91.62
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX
19.66
90.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
VDN
19.47
85.34
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
19.42
84.87
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX
19.08
81.25
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
QPLEX
18.73
75.00
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
QMIX
15.07
37.61
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX
-
1
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
QMIX
-
1
The StarCraft Multi-Agent Challenge
IQL
-
0
The StarCraft Multi-Agent Challenge
Heuristic
-
0
The StarCraft Multi-Agent Challenge
0 of 13 row(s) selected.
Previous
Next
Smac On Smac Corridor | SOTA | HyperAI超神经