HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
语音增强
Speech Enhancement On Deep Noise Suppression
Speech Enhancement On Deep Noise Suppression
评估指标
PESQ-WB
SI-SDR-WB
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PESQ-WB
SI-SDR-WB
Paper Title
Repository
ZipEnhancer (M)
3.81
22.22
-
-
TF-Locoformer (M)
3.72
23.3
TF-Locoformer: Transformer with Local Modeling by Convolution for Speech Separation and Enhancement
ZipEnhancer (S)
3.69
21.15
-
-
MP-SENet
3.62
21.03
Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement
BSRNN-S + MRSD
3.53
21.4
High Fidelity Speech Enhancement with Band-split RNN
BSRNN-16k
3.45
21.1
High Fidelity Speech Enhancement with Band-split RNN
MFNET
3.43
20.31
A Mask Free Neural Network for Monaural Speech Enhancement
BSRNN-S
3.42
21.3
High Fidelity Speech Enhancement with Band-split RNN
BSRNN
3.32
-
High Fidelity Speech Enhancement with Band-split RNN
CleanUNet-2
3.262
-
CleanUNet 2: A Hybrid Speech Denoising Model on Waveform and Spectrogram
-
FRCRN
3.23
-
Monaural Speech Enhancement with Complex Convolutional Block Attention Module and Joint Time Frequency Losses
FullSubNet+
3.218
16.81
FullSubNet+: Channel Attention FullSubNet with Complex Spectrograms for Speech Enhancement
CleanUNet
3.146
-
Speech Denoising in the Waveform Domain with Self-Attention
aTENNuate
2.98
-
aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on Raw Audio
-
Sudo rm -rf (U=32)
2.95
19.7
RemixIT: Continual self-training of speech enhancement models via bootstrapped remixing
DCTCRN-P
2.82
-
Real-time Monaural Speech Enhancement With Short-time Discrete Cosine Transform
-
DCTCRN-T
2.82
-
Real-time Monaural Speech Enhancement With Short-time Discrete Cosine Transform
-
DCCRN-E
2.79
-
Real-time Monaural Speech Enhancement With Short-time Discrete Cosine Transform
-
PoCoNet
2.7885
-
PoCoNet: Better Speech Enhancement with Frequency-Positional Embeddings, Semi-Supervised Conversational Data, and Biased Loss
-
FullSubNet
2.777
17.29
FullSubNet: A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement
0 of 34 row(s) selected.
Previous
Next
Speech Enhancement On Deep Noise Suppression | SOTA | HyperAI超神经