Traffic Prediction On Pemsd7 L
评估指标
12 steps MAE
12 steps MAPE
12 steps RMSE
评测结果
各个模型在此基准测试上的表现结果
| Paper Title | Repository | ||||
|---|---|---|---|---|---|
| STG-NCDE | 2.87 | 7.31 | 5.76 | Graph Neural Controlled Differential Equations for Traffic Forecasting | |
| STG-NRDE | 2.85 | 7.14 | 5.76 | Graph Neural Rough Differential Equations for Traffic Forecasting | |
| PM-DMNet(P) | 2.81 | 7.13 | 5.79 | Pattern-Matching Dynamic Memory Network for Dual-Mode Traffic Prediction | |
| DDGCRN | 2.79 | 7.06 | 5.68 | A Decomposition Dynamic graph convolutional recurrent network for traffic forecasting | - |
| PM-DMNet(R) | 2.79 | 6.99 | 5.81 | Pattern-Matching Dynamic Memory Network for Dual-Mode Traffic Prediction | |
| STD-MAE | 2.64 | 6.65 | 5.50 | Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting |
0 of 6 row(s) selected.