Unsupervised Anomaly Detection On Vehicle
评估指标
AUC
评测结果
各个模型在此基准测试上的表现结果
| Paper Title | Repository | ||
|---|---|---|---|
| SOM | 65.43 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| Isolation Forest | 59.42 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| Latent Outlier Exposure | 58.59 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| NeuTraL-AD | 57.03 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| RSRAE | 55.38 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| SOM-DAGMM | 53.82 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| Local Outlier Factor | 52.86 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| One Class Support Vector Machines | 51.68 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings | |
| DAGMM | 51.22 | Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings |
0 of 9 row(s) selected.