HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
视觉物体跟踪
Visual Object Tracking On Got 10K
Visual Object Tracking On Got 10K
评估指标
Average Overlap
Success Rate 0.5
Success Rate 0.75
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Overlap
Success Rate 0.5
Success Rate 0.75
Paper Title
Repository
SAMURAI-L
81.7
92.2
76.9
SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory
DAM4SAM
81.1
-
-
A Distractor-Aware Memory for Visual Object Tracking with SAM2
MITS
80.4
89.8
75.8
Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation
MCITrack-L384
80.0
88.5
80.2
Exploring Enhanced Contextual Information for Video-Level Object Tracking
ARTrackV2-L
79.5
87.8
79.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
LoRAT-g-378
78.9
87.8
80.7
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
ARTrack-L
78.5
87.4
77.8
Autoregressive Visual Tracking
-
ODTrack-L
78.2
-
-
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
MCITrack-B224
77.9
88.2
76.8
Exploring Enhanced Contextual Information for Video-Level Object Tracking
RTracker-L
77.9
87
76.9
RTracker: Recoverable Tracking via PN Tree Structured Memory
LoRAT-L-378
77.5
86.2
78.1
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
HIPTrack
77.4
88.0
74.5
HIPTrack: Visual Tracking with Historical Prompts
ODTrack-B
77.0
-
-
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
TATrack-L-GOT
76.6
85.7
73.4
Target-Aware Tracking with Long-term Context Attention
DropMAE
75.9
86.8
72
DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
NeighborTrack-OSTrack
75.7
85.72
73.3
NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets
MixViT-L(ConvMAE)
75.7
85.3
75.1
MixFormer: End-to-End Tracking with Iterative Mixed Attention
MixFormer-L
75.6
85.73
72.8
MixFormer: End-to-End Tracking with Iterative Mixed Attention
SeqTrack-L384
74.8
81.9
72.2
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
OSTrack-384
73.7
83.2
70.8
Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
0 of 39 row(s) selected.
Previous
Next
Visual Object Tracking On Got 10K | SOTA | HyperAI超神经