Visual Prompt Tuning On Fgvc
评估指标
Mean Accuracy
评测结果
各个模型在此基准测试上的表现结果
| Paper Title | Repository | ||
|---|---|---|---|
| SPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 86.00 | Revisiting the Power of Prompt for Visual Tuning | - |
| SPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 84.08 | Revisiting the Power of Prompt for Visual Tuning | - |
| SPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K) | 83.26 | Revisiting the Power of Prompt for Visual Tuning | - |
| VPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 83.12 | Visual Prompt Tuning | |
| GateVPT(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 83.00 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers | |
| VPT-Shallow (ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 79.26 | Visual Prompt Tuning | |
| SPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K) | 73.95 | Revisiting the Power of Prompt for Visual Tuning | - |
| GateVPT(ViT-B/16_MAE_pretrained_ImageNet-1K) | 73.39 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers | |
| VPT-Deep (ViT-B/16_MAE_pretrained_ImageNet-1K) | 72.02 | Visual Prompt Tuning | |
| VPT-Shallow (ViT-B/16_MAE_pretrained_ImageNet-1K) | 57.84 | Visual Prompt Tuning |
0 of 10 row(s) selected.