HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
零样本动作识别
Zero Shot Action Recognition On Ucf101
Zero Shot Action Recognition On Ucf101
评估指标
Top-1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Top-1 Accuracy
Paper Title
Repository
OTI(ViT-L/14)
92.8
Orthogonal Temporal Interpolation for Zero-Shot Video Recognition
IMP-MoE-L
91.5
Alternating Gradient Descent and Mixture-of-Experts for Integrated Multimodal Perception
-
MOV (ViT-L/14)
87.1
Multimodal Open-Vocabulary Video Classification via Pre-Trained Vision and Language Models
-
BIKE
86.6
Bidirectional Cross-Modal Knowledge Exploration for Video Recognition with Pre-trained Vision-Language Models
VideoCoCa
86.6
VideoCoCa: Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
-
Text4Vis
85.8
Revisiting Classifier: Transferring Vision-Language Models for Video Recognition
TC-CLIP
85.4
Leveraging Temporal Contextualization for Video Action Recognition
EVA-CLIP-E/14+
83.1
EVA-CLIP: Improved Training Techniques for CLIP at Scale
MOV (ViT-B/16)
82.6
Multimodal Open-Vocabulary Video Classification via Pre-Trained Vision and Language Models
-
OST
79.7
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition
EZ-CLIP
79.1
EZ-CLIP: Efficient Zeroshot Video Action Recognition
MAXI
78.2
MAtch, eXpand and Improve: Unsupervised Finetuning for Zero-Shot Action Recognition with Language Knowledge
LoCATe-GAT
76.0
LoCATe-GAT: Modeling Multi-Scale Local Context and Action Relationships for Zero-Shot Action Recognition
-
VicTR (ViT-B/16)
72.4
VicTR: Video-conditioned Text Representations for Activity Recognition
-
X-CLIP
72.0
Expanding Language-Image Pretrained Models for General Video Recognition
ResT
58.7
Cross-modal Representation Learning for Zero-shot Action Recognition
-
AURL
58
Alignment-Uniformity aware Representation Learning for Zero-shot Video Classification
JigsawNet
56.0
Rethinking Zero-shot Action Recognition: Learning from Latent Atomic Actions
-
CLASTER
53.9
CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action Recognition
-
ER-ZSAR
51.8
Elaborative Rehearsal for Zero-shot Action Recognition
0 of 35 row(s) selected.
Previous
Next
Zero Shot Action Recognition On Ucf101 | SOTA | HyperAI超神经