HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
零样本视频问答
Zeroshot Video Question Answer On Msvd Qa
Zeroshot Video Question Answer On Msvd Qa
评估指标
Accuracy
Confidence Score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Confidence Score
Paper Title
Repository
Flash-VStream
80.3
3.9
Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams
Tarsier (34B)
80.3
4.2
Tarsier: Recipes for Training and Evaluating Large Video Description Models
LinVT-Qwen2-VL (7B)
80.2
4.4
LinVT: Empower Your Image-level Large Language Model to Understand Videos
VILA1.5-40B
80.1
-
VILA: On Pre-training for Visual Language Models
SlowFast-LLaVA-34B
79.9
4.1
SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language Models
PLLaVA (34B)
79.9
4.2
PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
IG-VLM-34B
79.6
4.1
An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM
TS-LLaVA-34B
79.4
4.1
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
PPLLaVA-7B
77.1
4.0
PPLLaVA: Varied Video Sequence Understanding With Prompt Guidance
Elysium
75.8
3.7
Elysium: Exploring Object-level Perception in Videos via MLLM
MovieChat
75.2
2.9
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
ST-LLM
74.6
3.9
ST-LLM: Large Language Models Are Effective Temporal Learners
MiniGPT4-video-7B
73.92
-
MiniGPT4-Video: Advancing Multimodal LLMs for Video Understanding with Interleaved Visual-Textual Tokens
Video-LaVIT
73.2
3.9
Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
VideoGPT+
72.4
3.6
VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
LLaVA-Mini
70.9
4.0
LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
Video-LLaVA-7B
70.7
3.9
Video-LLaVA: Learning United Visual Representation by Alignment Before Projection
VideoChat2
70.0
3.9
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
LLaMA-VID-13B (2 Token)
70.0
3.7
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
LLaMA-VID-7B (2 Token)
69.7
3.7
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
0 of 28 row(s) selected.
Previous
Next
Zeroshot Video Question Answer On Msvd Qa | SOTA | HyperAI超神经