
摘要
图结构数据广泛出现在化学、自然语言语义、社交网络和知识库等多个领域。本文研究了针对图结构输入的特征学习技术。我们的研究起点是图神经网络(Graph Neural Networks, GNNs)的前期工作(Scarselli 等,2009),在此基础上,我们对其进行了改进,采用门控循环单元(gated recurrent units)和现代优化技术,并进一步拓展至序列输出任务。由此提出了一类灵活且具有广泛适用性的神经网络模型,在处理图结构问题时,相较于纯序列模型(如LSTM)展现出更优的归纳偏置(inductive biases)。我们在一些简单的人工智能任务(bAbI)和图算法学习任务上验证了该模型的能力。随后,我们展示了该模型在程序验证领域的一个问题上取得了当前最优的性能,该问题要求将子图与抽象数据结构进行匹配。
代码仓库
entslscheia/GGNN_Reasoning
pytorch
GitHub 中提及
vntchain/gnnscvuldetector
tf
GitHub 中提及
fau-is/grm
tf
GitHub 中提及
chingyaoc/ggnn.pytorch
pytorch
GitHub 中提及
aszot/ggnn
pytorch
GitHub 中提及
yujiali/ggnn
GitHub 中提及
bdqnghi/bi-tbcnn
tf
GitHub 中提及
messi-q/gnnscvuldetector
tf
GitHub 中提及
Microsoft/gated-graph-neural-network-samples
tf
GitHub 中提及
JamesChuanggg/ggnn.pytorch
pytorch
GitHub 中提及
Microsoft/graph-partition-neural-network-samples
tf
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| drug-discovery-on-qm9 | Gated Graph Sequence NN | Error ratio: 1.36 |
| graph-classification-on-ipc-grounded | GG-NN | Accuracy: 77.9% |
| graph-classification-on-ipc-lifted | GG-NN | Accuracy: 81.4% |
| node-classification-on-citeseer-1 | GGNN | Accuracy: 56.0% |
| node-classification-on-citeseer-with-public | GGNN | Accuracy: 64.6% |
| node-classification-on-cora-05 | GGNN | Accuracy: 48.2% |
| node-classification-on-cora-1 | GGNN | Accuracy: 60.5% |
| node-classification-on-cora-3 | GGNN | Accuracy: 73.1% |
| node-classification-on-cora-with-public-split | GGNN | Accuracy: 77.6% |
| node-classification-on-pubmed-003 | GGNN | Accuracy: 55.8% |
| node-classification-on-pubmed-005 | GGNN | Accuracy: 63.3% |
| node-classification-on-pubmed-01 | GGNN | Accuracy: 70.4% |
| node-classification-on-pubmed-with-public | GGNN | Accuracy: 75.8% |
| sql-to-text-on-wikisql | GGS-NN | BLEU-4: 35.53 |