
摘要
迭代最近点(Iterative Closest Point, ICP)算法是点集配准中最广泛使用的方法之一。然而,由于其基于局部迭代优化,ICP 通常容易陷入局部极小值。其性能高度依赖于初始值的质量,且仅能保证局部最优性。本文提出了一种全新的全局最优算法——Go-ICP,用于在 ICP 所定义的 L2 误差度量下,实现两个三维点集之间的欧几里得(刚性)配准。Go-ICP 方法基于一种分支定界(Branch-and-Bound, BnB)框架,该框架在三维运动空间 SE(3) 中进行全局搜索。通过充分利用 SE(3) 几何结构的特殊性质,本文推导出适用于配准误差函数的新上界与下界。同时,将局部 ICP 算法嵌入 BnB 框架中,既显著提升了计算效率,又保证了全局最优性。此外,本文还探讨了算法的扩展方法,以增强对异常值的鲁棒性。实验结果表明,所提出的 Go-ICP 方法能够在任意初始条件下均获得可靠且稳定的配准结果。该方法适用于需要全局最优解,或难以获得良好初始值的实际应用场景。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| point-cloud-registration-on-3dmatch-at-least-1 | Go-ICP | Recall (0.3m, 15 degrees): 22.9 |
| point-cloud-registration-on-eth-trained-on | GO-ICP | Recall (30cm, 5 degrees): 1.54 |
| point-cloud-registration-on-fp-o-e | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |
| point-cloud-registration-on-fp-o-h | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |
| point-cloud-registration-on-fp-o-m | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |
| point-cloud-registration-on-fp-r-e | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |
| point-cloud-registration-on-fp-r-h | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |
| point-cloud-registration-on-fp-r-m | GO-ICP | RRE (degrees): 1.87 RTE (cm): 2.71 Recall (3cm, 10 degrees): 0.06 |
| point-cloud-registration-on-fp-t-e | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |
| point-cloud-registration-on-fp-t-h | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |
| point-cloud-registration-on-fp-t-m | GO-ICP | RRE (degrees): - RTE (cm): - Recall (3cm, 10 degrees): 0.00 |