
摘要
图像修复,包括图像去噪、超分辨率重建、图像修补等,是计算机视觉与图像处理领域中一个长期研究的重要问题,同时也是低层图像建模算法的典型测试平台。本文提出了一种用于图像修复的超深层全卷积自编码网络,该网络采用对称的卷积-反卷积结构的编码-解码框架。换言之,该网络由多层卷积与反卷积运算单元构成,能够端到端地学习从受损图像到原始图像的映射关系。卷积层用于提取图像内容的抽象特征,同时抑制噪声等失真;反卷积层则具备上采样特征图的能力,有助于恢复图像的细节信息。为应对深层网络训练难度增大的问题,我们提出通过跳跃连接(skip-layer connections)对称地连接卷积层与反卷积层,该设计显著加快了网络训练的收敛速度,并取得了更优的修复效果。
代码仓库
meitalB/NN
tf
GitHub 中提及
titu1994/Image-Super-Resolution
tf
GitHub 中提及
nekitmm/starnet
tf
GitHub 中提及
teakkkz/imageSR
tf
GitHub 中提及
miriskalt/AnomalyDetectionAutoencoder
tf
GitHub 中提及
AdneneBoumessouer/MVTec-Anomaly-Detection
tf
GitHub 中提及
AdneneBoumessouer/LEGO-Anomaly-Detection
tf
GitHub 中提及
jupiterman/Super-Resolution-Images
tf
GitHub 中提及
Georg030/MRI-Image-Denoising
tf
GitHub 中提及
AdneneBoumessouer/Anomaly-Detection
tf
GitHub 中提及
ved27/RED-net
GitHub 中提及
lee-aaron/Image-Super-Resolution
tf
GitHub 中提及
nunof98/AiVision_Anomaly_Detection
tf
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| grayscale-image-denoising-on-bsd200-sigma10 | RED30 | PSNR: 33.63 SSIM: 0.9319 |
| grayscale-image-denoising-on-bsd200-sigma30 | RED30 | PSNR: 27.95 SSIM: 0.8019 |
| grayscale-image-denoising-on-bsd200-sigma50 | RED30 | PSNR: 25.75 SSIM: 0.7167 |
| grayscale-image-denoising-on-bsd200-sigma70 | RED30 | PSNR: 24.37 SSIM: 0.6551 |
| image-super-resolution-on-bsd100-2x-upscaling | RED30 | PSNR: 31.99 SSIM: 0.8974 |
| image-super-resolution-on-bsd100-3x-upscaling | RED30 | PSNR: 28.93 SSIM: 0.7994 |
| image-super-resolution-on-bsd100-4x-upscaling | RED30 | PSNR: 27.4 SSIM: 0.729 |
| image-super-resolution-on-set14-2x-upscaling | RED30 | PSNR: 32.94 SSIM: 0.9144 |
| image-super-resolution-on-set14-3x-upscaling | RED30 | PSNR: 29.61 SSIM: 0.8341 |
| image-super-resolution-on-set14-4x-upscaling | RED30 | PSNR: 27.86 SSIM: 0.7718 |
| image-super-resolution-on-set5-2x-upscaling | RED30 | PSNR: 37.66 SSIM: 0.9599 |
| image-super-resolution-on-set5-3x-upscaling | RED30 | PSNR: 33.82 SSIM: 0.923 |
| jpeg-artifact-correction-on-live1-quality-10-1 | RED30 | PSNR: 29.35 |
| jpeg-artifact-correction-on-live1-quality-20-1 | RED30 | PSNR: 31.73 |