4 个月前

半监督分类与图卷积网络

半监督分类与图卷积网络

摘要

我们提出了一种适用于图结构数据的半监督学习的可扩展方法,该方法基于一种直接在图上运行的高效卷积神经网络变体。我们通过局部一阶近似谱图卷积(spectral graph convolutions)来解释选择这种卷积架构的原因。我们的模型在图边的数量上呈线性扩展,并且学习到的隐藏层表示能够同时编码局部图结构和节点特征。在多个引文网络和知识图数据集上的实验表明,我们的方法显著优于相关方法。

代码仓库

kiharalab/gnn_pocket
pytorch
GitHub 中提及
udlf/wsef
pytorch
GitHub 中提及
lipingcoding/pygcn
pytorch
GitHub 中提及
mahsa91/RA-GCN
pytorch
GitHub 中提及
deepchem/moleculenet
pytorch
GitHub 中提及
yangjun1994/CAGCN
GitHub 中提及
tk-rusch/graphcon
pytorch
GitHub 中提及
alexOarga/haiku-geometric
jax
GitHub 中提及
fanzhenliu/dagad
pytorch
GitHub 中提及
tkipf/gcn
tf
GitHub 中提及
emartinezs44/SparkGCN
GitHub 中提及
KimMeen/GCN
pytorch
GitHub 中提及
thanhtrunghuynh93/pygcn
pytorch
GitHub 中提及
clin366/pygcn
pytorch
GitHub 中提及
tkipf/pygcn
官方
pytorch
GitHub 中提及
negarhdr/PGCN
pytorch
GitHub 中提及
jiangboahu/glcn-tf
tf
GitHub 中提及
bcsrn/gcn
pytorch
GitHub 中提及
HoganZhang/pygcn_python3
pytorch
GitHub 中提及
basiralab/reproduciblefedgnn
pytorch
GitHub 中提及
darnbi/pygcn
pytorch
GitHub 中提及
1075225782/GCN
pytorch
GitHub 中提及
hazdzz/GCN
pytorch
GitHub 中提及
zhiqiang00/Hon-GCN
pytorch
GitHub 中提及
meliketoy/graph-cnn.pytorch
pytorch
GitHub 中提及
basiralab/RG-Select
pytorch
GitHub 中提及
ajbisberg/gcn
tf
GitHub 中提及
cybermonic/cage-4-submission
pytorch
GitHub 中提及
tkipf/keras-gcn
tf
GitHub 中提及
mahsa91/GKD
pytorch
GitHub 中提及
nieci2024/pyglcn
pytorch
GitHub 中提及
nnaakkaaii/g2-MLP
pytorch
GitHub 中提及
ykrmm/sota_gnn
pytorch
GitHub 中提及
selmiss/gp-tlstgcn
pytorch
GitHub 中提及

基准测试

基准方法指标
graph-classification-on-ddGCN
Accuracy: 78.151±3.465
graph-classification-on-enzymesGCN
Accuracy: 73.466±4.372
graph-classification-on-imdb-bGCN
Accuracy: 79.500±3.109
graph-classification-on-nci1GCN
Accuracy: 84.185±0.644
graph-classification-on-nci109GCN
Accuracy: 83.140±1.248
graph-classification-on-proteinsGCN
Accuracy: 75.536±1.622
graph-property-prediction-on-ogbg-code2GCN
Ext. data: No
Number of params: 11033210
Test F1 score: 0.1507 ± 0.0018
Validation F1 score: 0.1399 ± 0.0017
graph-property-prediction-on-ogbg-code2GCN+virtual node
Ext. data: No
Number of params: 12484310
Test F1 score: 0.1595 ± 0.0018
Validation F1 score: 0.1461 ± 0.0013
graph-property-prediction-on-ogbg-molhivGCN (in Julia)
Ext. data: No
Number of params: 527701
Test ROC-AUC: 0.7549 ± 0.0163
Validation ROC-AUC: 0.8042 ± 0.0107
graph-property-prediction-on-ogbg-molhivGCN+virtual node
Ext. data: No
Number of params: 1978801
Test ROC-AUC: 0.7599 ± 0.0119
Validation ROC-AUC: 0.8384 ± 0.0091
graph-property-prediction-on-ogbg-molhivGCN
Ext. data: No
Number of params: 527701
Test ROC-AUC: 0.7606 ± 0.0097
Validation ROC-AUC: 0.8204 ± 0.0141
graph-property-prediction-on-ogbg-molpcbaGCN
Ext. data: No
Number of params: 565928
Test AP: 0.2020 ± 0.0024
Validation AP: 0.2059 ± 0.0033
graph-property-prediction-on-ogbg-molpcbaGCN+virtual node
Ext. data: No
Number of params: 2017028
Test AP: 0.2424 ± 0.0034
Validation AP: 0.2495 ± 0.0042
graph-property-prediction-on-ogbg-ppaGCN
Ext. data: No
Number of params: 479437
Test Accuracy: 0.6839 ± 0.0084
Validation Accuracy: 0.6497 ± 0.0034
graph-property-prediction-on-ogbg-ppaGCN+virtual node
Ext. data: No
Number of params: 1930537
Test Accuracy: 0.6857 ± 0.0061
Validation Accuracy: 0.6511 ± 0.0048
graph-regression-on-esr2GCN
R2: 0.642±0.000
RMSE: 0.528±0.642
graph-regression-on-f2GCN
R2: 0.878±0.000
RMSE: 0.355±0.878
graph-regression-on-kitGCN
R2: 0.814±0.000
RMSE: 0.469±0.814
graph-regression-on-lipophilicityGCN
R2: 0.800±0.008
RMSE: 0.565±0.011
graph-regression-on-parp1GCN
R2: 0.912±0.000
RMSE: 0.372±0.912
graph-regression-on-pcqm4mv2-lscGCN
Test MAE: 0.1398
Validation MAE: 0.1379
graph-regression-on-pgrGCN
R2: 0.658±0.000
RMSE: 0.565±0.658
graph-regression-on-zinc-fullGCN
Test MAE: 0.152±0.023
heterogeneous-node-classification-on-acmGCN
Macro-F1: 92.17
Micro-F1: 92.12
heterogeneous-node-classification-on-dblp-2GCN
Macro-F1: 90.84
Micro-F1: 91.47
heterogeneous-node-classification-on-freebaseGCN
Macro-F1: 27.84
Micro-F1: 60.23
heterogeneous-node-classification-on-imdbGCN
Macro-F1: 57.88
Micro-F1: 64.82
link-property-prediction-on-ogbl-citation2Full-batch GCN
Ext. data: No
Number of params: 296449
Test MRR: 0.8474 ± 0.0021
Validation MRR: 0.8479 ± 0.0023
link-property-prediction-on-ogbl-collabGCN (val as input)
Ext. data: No
Number of params: 296449
Test Hits@50: 0.4714 ± 0.0145
Validation Hits@50: 0.5263 ± 0.0115
link-property-prediction-on-ogbl-collabGCN
Ext. data: No
Number of params: 296449
Test Hits@50: 0.4475 ± 0.0107
Validation Hits@50: 0.5263 ± 0.0115
link-property-prediction-on-ogbl-ddiGCN+JKNet
Ext. data: No
Number of params: 1421571
Test Hits@20: 0.6056 ± 0.0869
Validation Hits@20: 0.6776 ± 0.0095
link-property-prediction-on-ogbl-ddiGCN
Ext. data: No
Number of params: 1289985
Test Hits@20: 0.3707 ± 0.0507
Validation Hits@20: 0.5550 ± 0.0208
link-property-prediction-on-ogbl-ppaGCN
Ext. data: No
Number of params: 278529
Test Hits@100: 0.1867 ± 0.0132
Validation Hits@100: 0.1845 ± 0.0140
molecular-property-prediction-on-esolGCN
R2: 0.936±0.006
RMSE: 0.520±0.024
molecular-property-prediction-on-freesolvGCN
R2: 0.957±0.009
RMSE: 0.815±0.086
node-classification-on-brazil-air-trafficGCN_cheby (Kipf and Welling, 2017)
Accuracy: 0.516
node-classification-on-chameleon-60-20-20GCN
1:1 Accuracy: 64.18 ± 2.62
node-classification-on-citeseerGCN
Accuracy: 70.3
node-classification-on-citeseer-60-20-20GCN
1:1 Accuracy: 81.39 ± 1.23
node-classification-on-coraGCN
Accuracy: 81.5%
node-classification-on-cora-60-20-20-randomGCN
1:1 Accuracy: 87.78 ± 0.96
node-classification-on-cornell-60-20-20GCN
1:1 Accuracy: 82.46 ± 3.11
node-classification-on-europe-air-trafficGCN_cheby (Kipf and Welling, 2017)
Accuracy: 46.0
node-classification-on-europe-air-trafficGCN (Kipf and Welling, 2017)
Accuracy: 37.1
node-classification-on-facebookGCN_cheby (Kipf and Welling, 2017)
Accuracy: 64.6
node-classification-on-facebookGCN (Kipf and Welling, 2017)
Accuracy: 57.5
node-classification-on-film-60-20-20-randomGCN
1:1 Accuracy: 35.51 ± 0.99
node-classification-on-flickrGCN_cheby (Kipf and Welling, 2017)
Accuracy: 0.479
node-classification-on-flickrGCN (Kipf and Welling, 2017)
Accuracy: 0.546
node-classification-on-geniusGCN
Accuracy: 87.42 ± 0.37
node-classification-on-nellGCN
Accuracy: 66.0
node-classification-on-non-homophilicGCN
1:1 Accuracy: 82.46 ± 3.11
node-classification-on-non-homophilic-1GCN
1:1 Accuracy: 75.5 ± 2.92
node-classification-on-non-homophilic-13GCN
1:1 Accuracy: 82.47 ± 0.27
node-classification-on-non-homophilic-14GCN
1:1 Accuracy: 87.42 ± 0.37
node-classification-on-non-homophilic-15GCN
1:1 Accuracy: 62.18 ± 0.26
node-classification-on-non-homophilic-2GCN
1:1 Accuracy: 83.11 ± 3.2
node-classification-on-non-homophilic-4GCN
1:1 Accuracy: 64.18 ± 2.62
node-classification-on-non-homophilic-6GCN
1:1 Accuracy: 62.23±0.53
node-classification-on-penn94GCN
Accuracy: 82.47 ± 0.27
node-classification-on-pubmedGCN
Accuracy: 79.0
node-classification-on-pubmed-60-20-20-randomGCN
1:1 Accuracy: 88.9 ± 0.32
node-classification-on-squirrel-60-20-20GCN
1:1 Accuracy: 44.76 ± 1.39
node-classification-on-texas-60-20-20-randomGCN
1:1 Accuracy: 83.11 ± 3.2
node-classification-on-wiki-voteGCN_cheby (Kipf and Welling, 2017)
Accuracy: 49.5
node-classification-on-wiki-voteGCN (Kipf and Welling, 2017)
Accuracy: 32.9
node-classification-on-wisconsin-60-20-20GCN
1:1 Accuracy: 75.5 ± 2.92

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
半监督分类与图卷积网络 | 论文 | HyperAI超神经